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ABSTRACT 

The gravitational N-body algorithm of Barnes and Hut [l] has been successfully implemented 
on a hypercube concurrent processor. The novel approach of their sequential algorithm has 
demonstrated itself to be well suited to hypercube architectures. The sequential code achieves 
0 (NlogN) speed by recursively dividing space into subcells, thereby creating a hierarchical 
grouping of particles. Computing interactions between these groups dramatically reduces the 
amount of communication between processors, as well as the number of force calculations. 
Parallelism is achieved through an irregular spatial grid decomposition. Since the decomposi- 
tion topology is not simple, a general loosely synchronous communication routine has been 
developed. Operations are simplified if the conventional grey code decomposition is modified 
so that the bits are taken alternately from each Cartesian dimension. A speedup of 180 has 
been achieved for a 500,000 particle two-dimensional calculation on 256 processors. A 
speedup of 65 has been obtained for a 64,000 particle three-dimensional calculation on 256 
processors. 

Background 

A direct integration of the N-body problem 
requires 1/2N (N-l) force calculations between 
pairs of particles. This allows a precise descrip- 
tion of the time evolution of the system, but in a 
computation time that grows as N2. Another 
method in common use is to solve for the global 
potential field to the particles, and then propagate 
each particle in this field for a short time. The 
potential field method is faster, in that it requires 
only order NlogN operations per timestep, but it 
entails a loss of short range accuracy. 

Because of the widespread applicability of 
N-body calculations, the parallel formulations of 
these algorithms were among the first to be imple- 
mented on hypercube processors. [2, 33 The con- 
ventional hypercube decomposition for a direct 
integration is to form a l-dimensional ring, and 
send a copy of each particle halfway around the 
ring, accumulating forces as it goes. From a 
purely parallel programming standpoint, this tech- 
nique is highly efficient and capable of almost 
linear speedup as long as the number of objects 
assigned to each processor is large (greater than 
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50, say). Nevertheless, even parallel computers 
cannot cope with algorithms that require O(N2) 
time, and despite its high efficiency, it is still not 
a practical solution when N is in the range lo4 to 
106. 

The potential method is also well suited to 
a hypercube topology. If a smoothed density 
function is calculated, the potential problem can 
be solved in Fourier space. The problem then 
becomes essentially one of computing a parallel 
Fourier transform. Efficient Fast Fourier 
Transforms, FIT’s, have been implemented on 
hypercubes, and some astrophysical simulations 
have been run on Caltech’s Mark11 hypercubes 
employing this algorithm. [4, 51 The main disad- 
vantage of this method is common to both the 
sequential and parallel implementations, namely, 
the loss of accuracy at length-scales approaching 
the size of the mesh used to model the potential. 

The efficiency of the potential method and 
the accuracy of direct integration have been com- 
bined in the algorithm of Barnes and Hut[l]. By 
grouping together increasingly large groups of 
particles at increasingly large distances, direct 
summation of forces may be used while maintain- 
ing logarithmic growth. The method relies on the 
representation of the system as a hierarchical tree. 
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The root of the tree is a cubical cell large enough 
to contain the entire system. This root cell con- 
tains the mass and center-of-mass coordinates of 
the entire system, as well as pointers to eight 
daughter cells, which contain more detailed infor- 
mation. The daughter cells are subdivided simi- 
larly, until each cell contains at most one particle. 

Once the tree is constructed, the force on a 
given particle may be determined by a recursive 
descent of the tree. Starting at the root, if the dis- 
tance from the particle to the center-of-mass of 
the cell is less than the diameter of the cell 
divided by a fixed accuracy parameter 8, then the 
interaction is computed. Otherwise the current 
cell is opened, and each of its eight daughter cells 
is examined. The error introduced by treating all 
particles within a cell as a single super-part&le at 
the center of mass depends on quadrupole and 
higher-order moments of the mass distribution 
within the cell, and may be rigorously deter- 
mined. In practice, forces computtd with an 
accuracy parameter as large as 1 are accurate to a 
few percent. 

Decomposition 

The parallel algorithm is an exact imple- 
mentation of the Barnes and Hut code. No major 
changes were made to the sequential code; paral- 
lelism was achieved by the addition of spatial 
decomposition and communication routines. 
These routines utilize several of the functions 
already implemented in the sequential code to 
great advantage. A crystalline operating system 
(CrosIIl) was used to manage the communication. 
The use of a fairly low level, loosely synchronous 
operating system is indicated because the algo- 
rithm requires a great deal of communication, 
which can only be handled efficiently at a low 
level[3]. 

The first step in the parallel program is a 
spatial decomposition. The particles are initially 
divided equally among the processors, without 
regard to spatial position. A coordinate to divide 
the particles into two parts is then determined. If 
a given particle is on the wrong side of this split, 
it is sent to the processor on the highest communi- 
cation channel. Now each half of the particles 
may be divided again and traded on the next 
highest channel. This process is continued until a 
split over each channel has been made. At the 
end of this process each processor has its own 
spatially grouped set of particles. Depending on 
how the split coordinate is determined, several 
types of domain decomposition may be obtained. 

If the splittiing coordinate simply divides the cub- 
ical volume in half each time, a regular grid 
decomposition results. Although simple, the reg- 
ular decomposition results in a highly unequal 
number of particles in each processor. An irregu- 
lar decomposition with more nearly equal 
numbers of particles in each processor results if 
the particles are split along their mean positions. 
A third method of decomposition is to split along 
the median particle position, which results in the 
best balance of particles among the processors. 
The median, however, is difficult to compute 
exactly, and is usually not much different from 
the mean, so the benefits of using it as a splitting 
criterion are questionable. Nevertheless, a paral- 
lel median finding algorithm using a successive 
approximation technique has been deveIoped. 
Figure 1 shows the processor boundaries obtained 
by using the center-of-mass splitting criterion on 
a system with two well separated concentrations 
of particles (galaxies). Also shown is the full 
hierarchical subdivision of space constructed by 
the sequential algorithm. 
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Figure 1. Decomposition of a system of 
particles on four processors. 

Once the particles have been spatially sub- 
divided they must be placed in a hierarchical tree. 
One’s initial inclination would be to make the tree 
identical in all processors, necessitating a com- 
plete exchange of information throughout the 
machine, much as in the O(iV2) algorithm. For- 
tunately, this is not necessary due to the way the 
forces are calculated from the tree. The heart of 
the algorithm lies in the fact that a given particle 
will only traverse part of the tree. In fact, a set of 
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particles from a limited spatial domain will all 
traverse approximately the same parts of the tree, 
so it is only necessary to represent a portion of the 
whole tree in each processor. This allows for a 
dramatic reduction in communication, as well as 
storage requirements. The question of which data 
must be communicated may be elegantly solved 
by using precisely the tree-traversal routines in 
the original sequential algorithm and applying a 
different action to each node of the tree. Once 
each processor has a tree from the particles it 
controls, the tree is then traversed with a function 
almost identical to the force calculation routine. 
Instead of calculating a force when the desired 
level of the tree has been reached, the function 
sends the data to other processors. When the 
communication cycle is complete, each processor 
has a picture of the entire system, made up of its 
own particles and virtual particles of various sizes 
sent from other processors. A new hierarchical 
tree then made in each processor, containing both 
the real and virtual particles in the processor. The 
algorithm then proceeds exactly as in the sequen- 
tial case. Figure 2 shows the same system as Fig- 
ure 1, as represented in processor 0 after the com- 
munication cycle. Note that the galaxy in the 
upper right is represented by only six virtual par- 
ticles. 

Figure 2. The system of Figure 1 as 
represented in processor 0. 

Communication is accomplished by trading 
data on each channel in turn. Since the data is 
grouped spatially, the code is simplified if the 
conventional grey code is modified so the bits are 
taken alternately from each Cartesian dimension. 

When this is done a loop over the channels will 
communicate alternately over each Cartesian 
dimension. Because data dependence decreases 
with Cartesian distance, data need only be 
addressed to neighboring processors in the hyper- 
cube topology, as long as the decomposition is 
regular. After each trade the data is assimilated 
into the tree, and may be sent again on the next 
channel. For irregular decompositions the pro- 
cedure is not so simple. A processor may need to 
send data to another Cartesian neighbor which is 
several channels away in the communication 
space. Since the data need not be entered into the 
trees of the intermediate processors, a general 
communication routine is needed to send data to 
any given processor. This type of loosely syn- 
chronous, long-distance communication system is 
known as a crystal router [3]. The conventional 
crystal router is unsuitable for this particular 
problem due to its inefficient use of memory, and 
a need for very large buffers. A new crystal router 
was developed which is especially suited to this 
application. By arranging messages in the proper 
order the communication may be done with a 
minimum of additional buffer space. 

Performance 

The performance of the parallel algorithm 
is quite good. The domain decomposition stage 
typically takes less than 3% of the computation 
time per timestep, even in the worst case of the 
first timestep where the data is spread at random. 
The time spent communicating the tree data for 
an accuracy parameter, 9, of 1 varies from 2% for 
small cube dimensions up to 50% for 256 proces- 
sors. Two-dimensional calculations perform 
somewhat better than three-dimensional ones. 
The major cause of inefficiency remains load 
imbalance, even after an irregular domain decom- 
position based on dividing the particles about 
their mean positions. Currently under investiga- 
tion is a decomposition about the median of the 
particles, which results in an equal number of par- 
ticles in each processor. 

The execution time per timestep for the 
sequential algorithm on a single Ncube node is 
very nearly Nlog,N x 3msec in two dimensions, 
and N logfl x 6msec in three dimensions. The 2D 
parallel algorithm on a hypercube of dimension 
eight (256, processors) can integrate 500,000 par- 
ticles in 160 seconds per timestep. The time is 
attributed to various sources in Figure 3. The 3D 
program can integrate 64,000 particles in 100 
seconds on 2.56 processors. Figures 4 and 5 show 
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the efficiency the parallel implementation for 
several values of N and several sizes of hyper- 
cube. 
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Figure 3. Breakdown of computation time (2 dim.) 
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Figure 4. Efficiency of the 2D algorithm 
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Figure 5. Efficiency of the 3D algorithm 

Although the Barnes and Hut algorithm 
was not conceived with parahel computers in 
mind, it is remarkable that it still performs 
extremely well in parallel. The underlying struc- 
ture of the sequential algorithm fits very well in 
the context of parallel programming. The crucial 
aspect of the algorithm is to reduce computation 
time by grouping particles in a hierarchical tree. 
A consequence is that the hierarchical structure is 

also very useful in reducing communication 
between processors and hence maintaining high 
efficiency in parallel. It is interesting that 
hierarchical structures have been “discovered” in 
numerous aspects of scientific computing in the 
last two decades. Hierarchical structures appear 
in multi-grid methods[6], the fast fourier 
transform[7], ray-tracing[8], renormalization 
group techniqueslg] and other N-body algorithms 
[lo] and in such non-scientific algorithms as 
quick-sort{1 11 and branch-and-bound tech- 
niquesll21. The same hierarchical structures that 
make these algorithms so attractive in sequential 
computation may prove to be the key to success- 
ful parallel computation as well. 
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