
C3P-593

An O(NlogN) Hypercube N-body Integrator

Mike Warren, John Salmon
California Institute of Technology, Pasadena, CA 91125

ABSTRACT

The gravitational N-body algorithm of Barnes and Hut [l] has been successfully implemented
on a hypercube concurrent processor. The novel approach of their sequential algorithm has
demonstrated itself to be well suited to hypercube architectures. The sequential code achieves
0 (NlogN) speed by recursively dividing space into subcells, thereby creating a hierarchical
grouping of particles. Computing interactions between these groups dramatically reduces the
amount of communication between processors, as well as the number of force calculations.
Parallelism is achieved through an irregular spatial grid decomposition. Since the decomposi-
tion topology is not simple, a general loosely synchronous communication routine has been
developed. Operations are simplified if the conventional grey code decomposition is modified
so that the bits are taken alternately from each Cartesian dimension. A speedup of 180 has
been achieved for a 500,000 particle two-dimensional calculation on 256 processors. A
speedup of 65 has been obtained for a 64,000 particle three-dimensional calculation on 256
processors.

Background

A direct integration of the N-body problem
requires 1/2N (N-l) force calculations between
pairs of particles. This allows a precise descrip-
tion of the time evolution of the system, but in a
computation time that grows as N2. Another
method in common use is to solve for the global
potential field to the particles, and then propagate
each particle in this field for a short time. The
potential field method is faster, in that it requires
only order NlogN operations per timestep, but it
entails a loss of short range accuracy.

Because of the widespread applicability of
N-body calculations, the parallel formulations of
these algorithms were among the first to be imple-
mented on hypercube processors. [2, 33 The con-
ventional hypercube decomposition for a direct
integration is to form a l-dimensional ring, and
send a copy of each particle halfway around the
ring, accumulating forces as it goes. From a
purely parallel programming standpoint, this tech-
nique is highly efficient and capable of almost
linear speedup as long as the number of objects
assigned to each processor is large (greater than

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the puMication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 ACM 1988 0-89791-278-O/88/0007/0971 $1.50

50, say). Nevertheless, even parallel computers
cannot cope with algorithms that require O(N2)
time, and despite its high efficiency, it is still not
a practical solution when N is in the range lo4 to
106.

The potential method is also well suited to
a hypercube topology. If a smoothed density
function is calculated, the potential problem can
be solved in Fourier space. The problem then
becomes essentially one of computing a parallel
Fourier transform. Efficient Fast Fourier
Transforms, FIT’s, have been implemented on
hypercubes, and some astrophysical simulations
have been run on Caltech’s Mark11 hypercubes
employing this algorithm. [4, 51 The main disad-
vantage of this method is common to both the
sequential and parallel implementations, namely,
the loss of accuracy at length-scales approaching
the size of the mesh used to model the potential.

The efficiency of the potential method and
the accuracy of direct integration have been com-
bined in the algorithm of Barnes and Hut[l]. By
grouping together increasingly large groups of
particles at increasingly large distances, direct
summation of forces may be used while maintain-
ing logarithmic growth. The method relies on the
representation of the system as a hierarchical tree.

971

The root of the tree is a cubical cell large enough
to contain the entire system. This root cell con-
tains the mass and center-of-mass coordinates of
the entire system, as well as pointers to eight
daughter cells, which contain more detailed infor-
mation. The daughter cells are subdivided simi-
larly, until each cell contains at most one particle.

Once the tree is constructed, the force on a
given particle may be determined by a recursive
descent of the tree. Starting at the root, if the dis-
tance from the particle to the center-of-mass of
the cell is less than the diameter of the cell
divided by a fixed accuracy parameter 8, then the
interaction is computed. Otherwise the current
cell is opened, and each of its eight daughter cells
is examined. The error introduced by treating all
particles within a cell as a single super-part&le at
the center of mass depends on quadrupole and
higher-order moments of the mass distribution
within the cell, and may be rigorously deter-
mined. In practice, forces computtd with an
accuracy parameter as large as 1 are accurate to a
few percent.

Decomposition

The parallel algorithm is an exact imple-
mentation of the Barnes and Hut code. No major
changes were made to the sequential code; paral-
lelism was achieved by the addition of spatial
decomposition and communication routines.
These routines utilize several of the functions
already implemented in the sequential code to
great advantage. A crystalline operating system
(CrosIIl) was used to manage the communication.
The use of a fairly low level, loosely synchronous
operating system is indicated because the algo-
rithm requires a great deal of communication,
which can only be handled efficiently at a low
level[3].

The first step in the parallel program is a
spatial decomposition. The particles are initially
divided equally among the processors, without
regard to spatial position. A coordinate to divide
the particles into two parts is then determined. If
a given particle is on the wrong side of this split,
it is sent to the processor on the highest communi-
cation channel. Now each half of the particles
may be divided again and traded on the next
highest channel. This process is continued until a
split over each channel has been made. At the
end of this process each processor has its own
spatially grouped set of particles. Depending on
how the split coordinate is determined, several
types of domain decomposition may be obtained.

If the splittiing coordinate simply divides the cub-
ical volume in half each time, a regular grid
decomposition results. Although simple, the reg-
ular decomposition results in a highly unequal
number of particles in each processor. An irregu-
lar decomposition with more nearly equal
numbers of particles in each processor results if
the particles are split along their mean positions.
A third method of decomposition is to split along
the median particle position, which results in the
best balance of particles among the processors.
The median, however, is difficult to compute
exactly, and is usually not much different from
the mean, so the benefits of using it as a splitting
criterion are questionable. Nevertheless, a paral-
lel median finding algorithm using a successive
approximation technique has been deveIoped.
Figure 1 shows the processor boundaries obtained
by using the center-of-mass splitting criterion on
a system with two well separated concentrations
of particles (galaxies). Also shown is the full
hierarchical subdivision of space constructed by
the sequential algorithm.

.___ _..... _....._....._.__........

Figure 1. Decomposition of a system of
particles on four processors.

Once the particles have been spatially sub-
divided they must be placed in a hierarchical tree.
One’s initial inclination would be to make the tree
identical in all processors, necessitating a com-
plete exchange of information throughout the
machine, much as in the O(iV2) algorithm. For-
tunately, this is not necessary due to the way the
forces are calculated from the tree. The heart of
the algorithm lies in the fact that a given particle
will only traverse part of the tree. In fact, a set of

972

particles from a limited spatial domain will all
traverse approximately the same parts of the tree,
so it is only necessary to represent a portion of the
whole tree in each processor. This allows for a
dramatic reduction in communication, as well as
storage requirements. The question of which data
must be communicated may be elegantly solved
by using precisely the tree-traversal routines in
the original sequential algorithm and applying a
different action to each node of the tree. Once
each processor has a tree from the particles it
controls, the tree is then traversed with a function
almost identical to the force calculation routine.
Instead of calculating a force when the desired
level of the tree has been reached, the function
sends the data to other processors. When the
communication cycle is complete, each processor
has a picture of the entire system, made up of its
own particles and virtual particles of various sizes
sent from other processors. A new hierarchical
tree then made in each processor, containing both
the real and virtual particles in the processor. The
algorithm then proceeds exactly as in the sequen-
tial case. Figure 2 shows the same system as Fig-
ure 1, as represented in processor 0 after the com-
munication cycle. Note that the galaxy in the
upper right is represented by only six virtual par-
ticles.

Figure 2. The system of Figure 1 as
represented in processor 0.

Communication is accomplished by trading
data on each channel in turn. Since the data is
grouped spatially, the code is simplified if the
conventional grey code is modified so the bits are
taken alternately from each Cartesian dimension.

When this is done a loop over the channels will
communicate alternately over each Cartesian
dimension. Because data dependence decreases
with Cartesian distance, data need only be
addressed to neighboring processors in the hyper-
cube topology, as long as the decomposition is
regular. After each trade the data is assimilated
into the tree, and may be sent again on the next
channel. For irregular decompositions the pro-
cedure is not so simple. A processor may need to
send data to another Cartesian neighbor which is
several channels away in the communication
space. Since the data need not be entered into the
trees of the intermediate processors, a general
communication routine is needed to send data to
any given processor. This type of loosely syn-
chronous, long-distance communication system is
known as a crystal router [3]. The conventional
crystal router is unsuitable for this particular
problem due to its inefficient use of memory, and
a need for very large buffers. A new crystal router
was developed which is especially suited to this
application. By arranging messages in the proper
order the communication may be done with a
minimum of additional buffer space.

Performance

The performance of the parallel algorithm
is quite good. The domain decomposition stage
typically takes less than 3% of the computation
time per timestep, even in the worst case of the
first timestep where the data is spread at random.
The time spent communicating the tree data for
an accuracy parameter, 9, of 1 varies from 2% for
small cube dimensions up to 50% for 256 proces-
sors. Two-dimensional calculations perform
somewhat better than three-dimensional ones.
The major cause of inefficiency remains load
imbalance, even after an irregular domain decom-
position based on dividing the particles about
their mean positions. Currently under investiga-
tion is a decomposition about the median of the
particles, which results in an equal number of par-
ticles in each processor.

The execution time per timestep for the
sequential algorithm on a single Ncube node is
very nearly Nlog,N x 3msec in two dimensions,
and N logfl x 6msec in three dimensions. The 2D
parallel algorithm on a hypercube of dimension
eight (256, processors) can integrate 500,000 par-
ticles in 160 seconds per timestep. The time is
attributed to various sources in Figure 3. The 3D
program can integrate 64,000 particles in 100
seconds on 2.56 processors. Figures 4 and 5 show

973

the efficiency the parallel implementation for
several values of N and several sizes of hyper-
cube.

140 T
120

100

Time spent per 80
timestep
(seconds) 60

I-

O

m Useful Computation

!!d Load Imbalance

q Domain Decomposition

1

dot - 8, 500000 particles

Figure 3. Breakdown of computation time (2 dim.)

Bificicncy for two-dimensional cnlcul;llian

Number of Particles

Figure 4. Efficiency of the 2D algorithm

Efficiency for three-dimensional calculation

Efficiency

Figure 5. Efficiency of the 3D algorithm

Although the Barnes and Hut algorithm
was not conceived with parahel computers in
mind, it is remarkable that it still performs
extremely well in parallel. The underlying struc-
ture of the sequential algorithm fits very well in
the context of parallel programming. The crucial
aspect of the algorithm is to reduce computation
time by grouping particles in a hierarchical tree.
A consequence is that the hierarchical structure is

also very useful in reducing communication
between processors and hence maintaining high
efficiency in parallel. It is interesting that
hierarchical structures have been “discovered” in
numerous aspects of scientific computing in the
last two decades. Hierarchical structures appear
in multi-grid methods[6], the fast fourier
transform[7], ray-tracing[8], renormalization
group techniqueslg] and other N-body algorithms
[lo] and in such non-scientific algorithms as
quick-sort{1 11 and branch-and-bound tech-
niquesll21. The same hierarchical structures that
make these algorithms so attractive in sequential
computation may prove to be the key to success-
ful parallel computation as well.

Acknowledgments

This work was supported in part by Depart-
ment of Energy Grant No. DE-FG03-
85ER25009, the Program Manager of the Joint
Tactical Fusion Office and the ESD division of
the USAF as well as grants from IBM and SAN-
DIA and a Shell Foundation Fellowship. We are
indebted to Josh Barnes and Piet Hut for gen-
erously providing their C implementation of the
sequential version of the algorithm.

References

1.

2.

3.

4.

5.

6.

7.

J. Barnes & P. Hut, A Hierarchical
O(NlogN) Force-Calculation Algorithm,
Nature, 324,446449,1986.

J. Salmon, An Astrophysical N-body Simu-
lation for Hypercubes, Caltech Concurrent
Computation report no. 78,1984,

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J.
Salmon & D. Walker, Solving Problems on
Concurrent Processors, Prentice-Hall, En-
glewood Cliffs N.J., 1988.

J. Salmon & C. Hogan, Correlation of QSO
Absorption Lines in Universes Dominated
by Cold Dark Matter, Monthly Notices of
the Royal Astronomical Society, 221, p. 93,
1986.

P. Quinn, J. Salmon & W. Zurek, On the
Structure of Galactic Haloes, Nature, 322,
p. 329, 1986.

W. Briggs, A Multi-grid Tutorial, SIAM,
1987.

J. Cooley & J. Tukey, An Algorithm for the
Machine Calculation of Complex Fourier
Series, Math. Comput., 19, p. 297, 1965.

974

8. S. Rubin & T. Whitted, A 3-Dimensional
Representation for Fast Rendering of Com-
plex Scenes, Computer Graphics, (proc.
SIGGRAPH 1980), 1980.

9. K. Wilson, & J. Kogut, The Renormaliza-
tion Group and the E Expansion, Physics
Reports, 12, p. 75,1974.

10. L. Greengard & V. Rokhlin, A Fast Algo-
rithm for Particle Simulatiosn, Yale
University Computer Science Research Re-
port YALEU/DCS/RR-459,1986.

11. D. Knuth, The Art of Computer Program-
ming: vol. 3 Sorting and Searching, Addis-
on Wesley, Reading Mass., 1973.

12. C.H. Papadimitriou and K. Stieglitz, Com-
binatorial Optimization: Algorithms and
Complexity, Prentice Hall, New Jersey,
1982.

975

