v
|
11003 4 VS PR I i s, uwmnw

CUBIX: Programming Hypercubes without
Programming Hosts

JOHN SALMON*

Abstract. Typically, application programs for hypercubes consist of two parts, a master
process running on the host and a server running in the nodes of the hypercube.

CUBIX adopts a different viewpoint. Once a program is loaded into the hypercube,
that program assumes control of the machine. The host process only serves requests for
operating system services. Since it is no more than a file server, the host program is
universal; it is unchanged from one application to the next.

This programming model has some important advantages.

- Program development is easier because it is not necessary to write a separate pro-
gram for the host,
- Hypercube programs are easier to develop and debug because they can use standard

I/0 routines rather than machine-dependent system calls.

- Hypercube programs can often be run on sequential machines with minimal modifi-

Sibl S .. SR A f—— | o—— s a e F ¥ . L e 2 e BN

cation.

Versions of CUBIX exist for both crystalline and amorphous applications. In cry-
stalline applications operating system requests occur synchronously. Requests are either
"singular® or "multiple" according to whether all nodes request the same or distinct
actions. In amorphous applications requests occur completely asynchronously. The host
process serves each request independently. Care is taken so that many processors may
simultaneously access the same file.

1. Introduction

CUBIX was created to make programming hypercubes easier. It’s goal is to elim-
inate significant duplication of effort on the part of hypercube programmers, and to make
the hypercube environment appear much more familiar to application programmers. It is
also intended to make hypercube programs more easily portable to sequential machines as

* Physics Department, California Institute of Technology, Pasadena, CA 91125




4 SALMON

well as between different brands of hypercubes.

The motivation for CUBIX can probably best be understood by sitting down with
one's favorite hypercube and trying to get each of the nodes to perform a trivial task
involving input and output to the console, For example, have each processor identify
itself, and muitiply its processor number by a number entered on the console, printing an
informative message like:

"I am processor 17 and 3 times 17 is 51."

in response to the number 3 being entered. This is an extraordinarily difficult exercise
because the nodes of the hypercube do not have direct access to the operating system
facilities available on the host. One can not, for instance, execute a "scanf{” in the nodes to
obtain data from the console. Instead, the host (intermediate host, cube manager, control
processor, etc.) must allocate a buffer, read data from the console into it, pass the contents
of the buffer to the nodes, read a message for each node containing the results of that
node’s calculation, format those massages and print the results. Programming this exercise
requires two programs, one for the host and one for the nodes of the cube, often compiled
with different compilers and different compiler options.

This example is obviously frivolous, but it illustrates an important shortcoming in
hypercube programming environments. Maintaining and debugging "real" programs is
unnecessarily difficult for exactly the same reason as in the exercise: 1t is too hard to use
the host’s operating system. Debugging is extremely difficult because programs cannot be
easily modified to produce output tracing the flow of control. Additionally, when a pro-
gram is modified, it often requires separate but coordinated changes to both the node pro-
gram and the host program. The necessary coordination is a rich source of minor bugs.

A further deficiency in the hypercube environments is the duplication of effort
involved in this programming style. Each programmer is forced to reinvent a host-cube
protocol which resembles, functionally at least, the protocols that have been written hun-
dreds, if not thousands, of times already. After writing a few protocols, each programmer
tends to develop a characteristic signature. Programmers quickly learn to reuse their
'main’ routines, but by then, their time has already been wasted.

Finally, after expending the effort to develop an application on the hypercube, the
programmer finds that the program will not run on a sequential machine. The I/0 proto-
col designed for the cube is completely foreign to the sequential machine. Even though
the bulk of the application would operate correctly by linking with a very simple library
of dummy communication routines, the host program and node program must be "glued”
back together. Maintaining an evolving code intended to run on both sequential machines
and hypercubes is quite difficult for this reason. (Note that the program, once glued, no
longer runs on the hypercube.)

All these deficiencies can be traced to a single source. Hypercubes are viewed as
high—-speed peripherals attached to a host computer which controls their operation. As
peripherals go, they are extremely flexible and programmable, but control, nevertheless,
resides in the host. The host loads programs and data into the cube, which then computes
and eventually returns results which are expected, in number and length, by the host. In
more sophisticated applications, the cube analyzes various tokens passed by the host and
may perform different computations based on their values. This general organizational
style is familiar to most hypercube programmers. :

2, A diff

. Th
trol the ¢
to the co
‘the cube
of-day cl
more tha
such reg
serves th
programr

It is
as the sy:
learning :
program
quence th
sage, add
the progr:

Higl
the CUB;
designed |
example,
various fo
Section 1

3. The cat«
It is
computer
additions.
the use of
markedly t
up in the n

How
differ:




iting down with
m a trivial task
ocessor identify
sole, printing an

iifficult exercise
‘perating system
" in the nodes to
nanager, control
sass the contents
= results of that
ing this exercise
, often compiled

shortcoming in
al" programs is
too hard to use
yrams cannot be
lly, when a pro-
‘h the node pro-
minor bugs.

cation of effort
ent a host-cube
en written hun-
ich programmer
- to reuse their

hypercube, the
The I/0 proto-
:, Even though
y simple library
must be "glued"
ential machines
once glued, no

; are viewed as
operation. AS
], nevertheless,
then computes
by the host. In
yy the host and
organizational

CUBIX: PROGRAMMING HYPERCUBES WITHOUT PROGRAMMING HOSTS 5

2. A different perspective

. The basic idea behind CUBIX is that the program running in the cube should con-
trol the operation of the associated program running on the host. This is exactly opposite
to the common style of programming discussed above., In CUBIX, tokens are passed from
the cube to the host requesting activities like opening and closing files, reading the time-

'of-day clock, reading and writing the file system, etc. The host program does nothing

more than read requests from the cube, act on them and return appropriate responses. All
such requests are generated by subroutine calls in the cube. The host program which
serves the requests is universal; it is unchanged from one application to the next, and the
programmer need not be concerned with its internal operation.

It is convenient to give the cube subroutines the same names and calling conventions
as the system calls they generate on the host. This relieves the programmer of the task of
Iearning a new lexicon of system calls. Any operation he would have performed in a host
program can be encoded in a syntactically identical way in the cube. It is of no conse-
quence that the subroutine called in the cube will actually collect its arguments into a mes-
sage, add a token identifying the request, and send the message to the host for action. All
the programmer sees is a call to, e.g., write(fd, ptr, cnt ).

High-level utilities are often written in terms of a set of standard system calls. Since
the CUBIX system calls have the usual names and calling sequences, system utilities
designed for the sequential host computer can be readily ported to the hypercube, For
example, the C Standard I/O Library can be compiled and linked with CUBIX allowing
various forms of formatted and unformatted buffered I/0. Under CUBIX, the exercise of
Section ! would be programmed as;

#include <stdio.h>

main()

{

int entry, pnum;

pnum = /* machine dependent specification of local processor number ®/

scanf("%d", &entry);
fmulti(stdout); /* see section 4. */
printf("] am processor %d, and %d times %d is %d\n",

pnum, entry, pnum, pnum®*entry);
exit(0);

3. The catch

It is highly optimistic to think that a set of system calls designed for.a sequential
computer can be sufficient for use in a parallel environment without modifications or
additions. In fact, the requirements of the parallel environment do force one to restrict
the use of some routines and also to add a few additional ones. The details differ
markedly between crystalline and amorphous environments. The two cases will be taken
up in the next two sub-sections. In both cases, the issue addressed is the same:

How does one resolve the problem that different processors may need to do

different things?




6 SALMON

3.1 The crystalline case

Crystalline programs are characterized by uniformity from processor to processor
and a computation that proceeds in loose lock-step. Synchronization is maintained by
enforcing a rendez-vous whenever data is communicated between processors. Since loose
synchronization is the norm in crystalline programs, it is not unreasonable to demand that
system calls be made loosely synchronously. That is, it is permissible to call system sub-
routines whenever all communication channels are free, Furthermore, when a system call
is made in one processor, it must be made in all processors at the same time, and with
identical arguments. (Exceptions will be discussed shortly.} This neatly resolves the prob-
lem of how to deal with disparate requests from different nodes; such an event is
declared to be in error.

Of course, there are times when different nodes need to request different actions
from the host. The short program in Section 2 contains an example in which each proces-
sor attempts to print a different string. CUBIX adds two system calls, mread and mwrite,
to the usual set to allow for distinct I/O operations to be performed by different proces-
sors. Both must be called loosely synchronously, but they may have different arguments in
each node. Their effect is as follows:

mread(fd, pir, cnt) causes cnt, bytes to be read from the file referred to by file descriptor
Jd, into the memory of processor 0 starting at ptro. The next cnt, bytes
are read from the file into the memory of processor 1 starting at ptr,, ete.
Subscripts refer to the value of the argument in the corresponding proces-
sor.

mwrite(fd, ptr, cnt) behaves like mread, except that data is copied from the memory of the
various processors to the file.

In C programs, it is much more common to use the the Standard I/O Library rather
than to use system calls like read, write, open and close directly. Thus, it is crucial to
enhance the Standard I/0O Library so users can take advantage of mread and mwrite along
with the usual system calls. In the Standard 10 Library, I/O is directed to stream:s,
declared as pointers to type FILE. In CUBIX, streams have a new attribute called mudti-
plicity. That is, streams can be in either the singwular or mulliple state. The functions,
Jmulti(stream) and fsingl(stream) are provided, which change the multiplicity of their
argument to multiple and singular, respectively. Singular streams behave in the usual way,
and are bound by the usual rules of loose synchronization and identical arguments. Multi-
ple streams form the standard I/0 interface to mread and mwrite. They allow the pro-
grammer to read and write data which is distinct in each node of the hypercube. Since
output is buffered, queueing data for output to multiple streams need not be synchronous.

On the other hand, flushing the buffer must be done explicitly, and it must be synchro-
nous. Flushing a multiple stream causes the data stored in each processor's buffer to
appear in order of increasing processor number. The buffer associated with a stream may
be flushed by calling one of fflush, fclose or exit, simultaneously in all the nodes of the
hypercube. Since the programmer has control over when buffers are flushed, he can con-
trol,in detail, the appearance of his program’s output. For example, the code fragment:

fmulti(stdout);
printf("hello\n");
fllush(stdout);
printf("goodbye\n");
fflush(stdout);

pri
pri
filv
produces il

hell
hell

hell
goo
g00

CUu!

Multip
must be av:
output routj
upon return
applied to i
then passes
to multiple i

3.2 The amo

Amorp
extremely in
wished to p
amorphous |
independent
of loose sync
straightforwa
must beware
it would be ¢
ously request

There is
operating sys
could simply
tunately, ther
program must
still a limit of
grammer usua

When a
unchanged by
tion about the
read or write
is sent as well



r to processor
maintained by
rs, Since loose
‘0 demand that
all system sub-
n 2 system call
rime, and with
olves the prob-
h an event is

fferent actions
h each proces-
d and mwrite,
ferent proces-
t arguments in

file descriptor
ext cnty bytes
ng at piry, €tc.
nding proces-

nemory of the

_ibrary rather
t is crucial to
mwrite along
d to streams,
: called mndti-
"he functions,
icity of their
he usual way,
nents. Multi-
llow the pro-
rcube. Since
synchronous,

t be synchro-
yr's buffer to
a stream may
nodes of the
., he can con-
fragment:

CUBIX: PROGRAMMING HYPERCUBES WITHOUT PROGRAMMING HOSTS 7

_ printf("CUBIX ");
printf("is flexible\n");
fflush(stdout);

produces the following output when executed in all processors loosely synchronously;

hello
hello
hello
goodbye
goodbye

goodbye
CUBIX is flexible
CUBIX is flexible

CUBIX is flexible

Multiple input streams are not quite as flexible as output streams because the data
must be available to the program when the input routine returns. This is in contrast to
output routines which do not guarantee that the data has appeared on the output device
upon return from the function. Thus, when input functions like scanf and getc are
applied to multiple streams, each node reads as much of the input stream as necessary and
then passes control on to the next node in sequence. The function, ungetc, when applied
to multiple input streams replaces the last character read by the last processor.

3.2 The amorphous case

Amorphous (ie. non-crystalline) programs are naturally asynchronous. It would be
extremely inconvenient for the programmer to synchronize his calculation every time he
wished to produce output or interact with the operating system. The processors in an
amorphous CUBIX program are treated as though they arc executing separate and
independent processes. There is no notion of singular 1/0, and there are no requirements
of loose synchronization or identical arguments, Most system calls behave in a completely
straightforward way when used in an amorphous CUBIX program, but the programmer
must beware of asking for system resources too frequently. With currently available hosts,
it would be easy to swamp the host’s operating system if every node were to simultane-
ously request the same resource.

There is some difficulty, however, in maintaining numerous open files. If the host’s
operating system allowed CUBIX to allocate several hundred file descriptors, CUBIX
could simply return a distinct file descriptor to every process that requested one. Unfor-
tunately, there is a limit of about twenty simultaneously open files, so the CUBIX host
program must remember what files are already open and avoid reopening them. There is
still a limit of about twenty simultaneously open file names, which means that the pro-
grammer usually cannot open a different file for each processor in the cube.

When a file is opened by a processor, that processor’s pointer into the file is
unchanged by the activity of other processors. Each processor maintains some informa-
tion about the files it has opened, including the current offset at which to begin the next
read or write operation. When a read or write request is sent to the host, this information
is sent as well, so the host can "seek" to the correct place before reading or writing the




8 SALMON

data. Thus, each processor has complete control over the location of each byte it writes
into the file. Using this system requires considerable care on the part of the programmer
to keep processors using the same file from destroying one another’s data. Nevertheless,
such care often results in programs whose output is repeatable, so that the order of the
data in output files does not depend on tiny variations in processor speed, etc. Aside from
difficulty of use, there is another important disadvantage. In order for several processors
to share a file, it must make sense for that file to have multiple pointers into it. This is
simply not true of devices like terminals, to which data may only be appended.

The UNIX operating system provides for file output in append mode, in which each
datum is placed at the end of the file, regardless of the offset of the process’ current file
pointer. CUBIX supports the same idea. Placing output files in append mode is a simple
way of guaranteeing that data will not be lost because of several processors writing to the
same offset. Output to files in append mode may also be directed to a terminal or other
serial device. Append mode has the disadvantage that each record in the file must usualty
be tagged to indicate its originator. A system to automatically tag each record and record
a "table—of—contents" at the end of the file upon closure is under development.

4. Experience with CUBIX

A crystalline version of CUBIX has been running at Caltech since early 1986, A ver-
sion for amorphous applications was implemented about six months later. Since its intro-
duction, CUBIX has become quite popular, and systems are now operating on the Caltech
Mark IT and Mark I[II machines as well as the Intel IpSC and the NCUBE. The prevailing
attitude among users is that use of CUBIX is vastly simpler than the old host-cube proto-
cols (even among persons not in the author’s immediate family). Several programs have
been written for which the same code can be compiled and run on a sequential machine,
as well as a hypercube running CUBIX.

CUBIX's most significant drawback seems to be the increased code size in node pro-
grams. All computation that would have been done on the host is now done in the nodes
of the hypercube. Although it is not any slower to perform inherently sequential tasks
simultaneously in many processors, a copy of the code must reside in each processor. It is
important to realize that both Standard I/O routines like printf, which usually does not
appear in non-CUBIX programs, and application-dependent sequential code, which would
have appeared in the host program, must now be included in the code that runs in every
node. The size of this code can be significant, and reduces the amount of space available

for data. The code and data linked by a call to prinyf, for example, requires about
6 kbytes on each node in our implementation. Measures can be taken to reduce the size of

application~dependent sequential code. For example, filters can be used with UNIX pipes
to massage the data prior to sending it into the cube, or after getting it back. So far, we
have not needed more generality than that provided by simple input and output filters.
Nevertheless, the possibility remains that in subsequent versions of CUBIX, application
programs in the cube could call application~-dependent subroutines linked into the host

program.

5. Conclusion
Adopting the viewpoint that the program running in the nodes of the hypercube
should control the behavior of the host program has some extremely desirable conse-

quences.

It i
by ¢
Giv
the

sou!
All

Op:
hos’
Sin¢
ally
Sin:
pro
hyp




byte it writes
¢ programmer
Nevertheless,
s order of the
. Aside from
ral processors
ato it. This is
:d,

in which each
s’ current file
.de is a simple
writing to the
ninal or other
= must usually
rd and record
1.

7 1986. A ver-
ince its intro-
n the Caltech
The prevailing
st-cube proto-
rograms have
itial machine,

: in node pro-
: in the nodes
juential tasks
-ocessor. It is
ally does not
.which would
runs in every
)ace available
quires about
ice the size of
1 UNIX pipes
k. So far, we
output filters.
Z, application
into the host

1¢ hypercube
irable conse-

s —adey

i

5 -2 A RS (1 T T T

i S o

9

CUBIX: PROGRAMMING HYPERCUBES WITHOUT PROGRAMMING HOSTS

It is possible to write a universal host program which accepts commands generated
by subroutine calls in the nodes of the hypercube.

Given a universal host program, programmers only write one program (the one for
the nodes) for any application, eliminating considerable labor and an annoying
source of bugs. .

All details of the host-cube interface arc hidden from the application programmer.
Operating system services are obtained by system calls identical to those used on the
host.

Since applications require only one program to operate on the hypercube, it is usu-
ally a simple matter to run them on a sequential machine as a special case.

Since operating system interaction is, for the most part, the same as in sequential
programs, there is considerably less to learn before one can begin writing significant
hypercube programs.




