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Abstract. Cosmological N-body simulations on parallel computers produce large datasets — gigabytes at each
instant of simulated cosmological time, and hundreds of gigabytes over the course of a simulation. These large
datasets require further analysis before they can be compared to astronomical observations. The “Halo World”
tools include two methods for performing halo finding: tdentifving all of the gravitationally stable clusters in a
point-sampled density field. One of these methods is a paralle] implementation of the friends of friends (FOF)
algorithm, widely used in the field of N-body cosmology. The new IsoDen method based on isodensity surfaces
has been developed to overcome some of the shortcomings of FOF. Parallel processing is the only viable way of
obtaining the necessary performance and storage capacity to camy out these analysis tasks. Ultimately, we must
also plan to use disk storage as the only economically viable alternative for storing and manipulating such large
data sets. Both IsoDen and friends of friends have been implemented on a variety of computer systems, with
parallelism up to 512 processors, and successfully used to extract halos from simulations with up to 16.8 million
particles.
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1. Introduction

According to current cosmological theory, much of the mass in the universe is in the form
of so-called dark matter whose only significant interaction is gravitational (Peebles, 1993).
Estimates are complicated by a number of difficult-to-measure parameters, but it is likely
that dark matter constitutes between 20% and 98% of the mass of the universe. During
the evolution of the universe, this dark matter forms dense objects, called halos, due to
gravitational instability. Within these halos, the dark matter is supported against further
collapse by random motions. The normal matter in the universe collects at the centers of
these halos, where star formation leads to the existence of luminous galaxies and other
observable phenomena.

A detailed analytic understanding of the evolution of the dark matter is hampered by the
highly non-linear nature of the problem, and the complexity of the structures formed. Hence
numerical methods have become a very important tool for understanding this evolution, and
for comparing cosmological theories with astronomical observations. In N-body simula-
tions, a piece of the Universe is represented by a set of N discrete particles, which can be
interpreted as a Monte Carlo sampling of the vastly more numerous dark matter particles.
Each particle has a position, a velocity, and a mass. The particle masses are set at the initial
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time and remain fixed; the particle positions and velocities are numerically integrated for-
ward in time under the influence of the gravitational field of all of the particles. Simulations
with larger N are desirable because the sampling is more complete. Larger V also gives
larger dynamic range, i.¢., the ratio of largest to smallest scales which can be addressed in
a single simulation. This is important, for example, for investigating small-scale structure
in simulations with a volume large enough to sample a representative region of the universe
(Zurek et al., 1994), or for better resolution of substructure in simulations of clusters of
galaxies (Carlberg, 1985).

The output of these N-body simulations is a list of the three-dimensional positions and
velocities of all the bodies in the system. The raw data themselves do not provide direct
physical insight — i.e., the individual bodies do not correspond to any particular object
in the physical universe. Before drawing physical conclusions, the physically meaningful
halos must be located and cataloged. Halos are stable, persistent, gravitationally bound
coltections of bodies that correspond to the locations at which galaxies or clusters of galaxies
form. Halos may contain other halos in a hierarchy. This represents the idea that a small
collection of bodies may be stable and gravitationally bound, e.g., the solar system, yet
it may be contained within a much larger stable system, e.g., the Milky Way galaxy. (In
practice, the hierarchies that form in current computer models have nowhere near the range
of length and time scales of this illustrative example.) Once a list of halos is compiled,
their properties, e.g., mass, location, velocity, shape, angular momentum, etc., may be
compared statistically with those of observed galaxies. This is the standard methodology
in cosmological simulations.

Halo finding is essentially a hierarchical clustering problem, where the number of clusters
is very large and is not known in advance. As such, the techniques that are presented here
in the context of astrophysical data reduction may find application in other fields where
very large spatial data sets must be analyzed. Most of the techniques presented are not
specific to astrophysical problems and are based on counting, neighbor-finding and density
estimation, so they may have direct analogs in other problem domains. We also report on
techniques that rely on problem-specific knowledge, e.g., the evaporation criterion discussed
in section 3.2. While the specific physical concept of binding energy may be inappropriate
for other disciplines, it illustrates the power of using domain-specific knowledge to craft
appropriate statistical criteria.

Recently, systems with N larger than 322 million have been simulated on massively par-
allel computers (Warren et al., 1997). These large simulations produce correspondingly
large datasets, posing a challenge for analysis, which has traditionally been done on work-
stations. Practical considerations like available memory, reasonable turnaround time, and
a desire to study time-dependent processes make it increasingly desirable for critical data
analysis tasks also to run on parallel machines. The “Halo World” project is developing a
set of parallel tools for detailed analysis of halo objects from very large N-body gravita-
tional simulations, in preparation for correlation with future deep space object sky surveys
such as the Sloan Digital Sky Survey (SDSS). We expect the output of future simulations
to approach terabytes, consisting of hundreds of “snapshots™ each of several gigabytes.

The two methods presented here address the problem of halo finding. Halos coincide
with peaks in the underlying density field, but not all peaks are stable. A density peak’s
stability depends on the velocities of its constituent particles. An individual particle is
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Table |. Simulation Parameters.

Maodel N Volume

Model 1 16,777,216 (250 Mpc)? cube
Model 2 525,002 (20 Mpc)® cube
Model 3 8.599 37 (10 Mpe)® sphere

gravitationally bound to the density peak if its velocity is small enough that the particle is
confined by the gravity of the density peak to remain in the spatial region of the peak. The
density peak as a whole is gravitationally bound if enough particles are bound so that the
density peak persists over time.

Strictly speaking, halos should be defined in the six-dimensional phase space that in-
cludes both velocities and positions. In practice, halos are identified as clusters in three-
dimensional position space, and then are refined and possibly rejected if they do not meet
the stability criterion in the six-dimensional phase space. In fact, the stability criterion itself
is often never evaluated. Instead, peaks are accepted if they are sufficiently large, c.f., Ny,
in Section 3. This is justified by noting that in practice, most density peaks form by gravita-
tional collapse, and as a result are automatically bound. The important exceptions are those
that arise from noise fluctuations in the discrete sampling of the underlying distribution.
These fluctuations will result in density peaks which are rot bound, which we refer to as
spurions halos. The size criterion implicitly relies on the fact that large chance fluctuations
are extremely unlikely, so that any observed cluster above a certain size is almost certainly
a genuine halo.

The complexity of the spatial, velocity and density structure of the data is illustrated in the
left hand panels of Figure 1. The halos are the distinct clusters of points that are supported
against gravity by the ‘random’ velocities of the particles. The magnitude of the problem
is illustrated by Figure 5, which shows the results of halo finding in Model 1. The original
data has 400 times as many particles. The number of particles in each halo ranges from ten
up to tens of thousands. New simulation data sets are larger by a factor of about 20, placing
proportionally larger demands on computational resources.

The Halo World research is developing its data analysis software to run on the most
cost effective parallel computers available, clusters of commodity personal computers —
*Piles-of-PCs” (Becker et al., 1995). Although no more than the cost of a high-end sci-
entific workstation, clustered PCs can retain the hundreds of gigabytes of data required
for this problem in local secondary storage, and deliver in excess of a gigaflops sustained
performance. The algorithmic approach to be taken is in part driven by two factors related
to this class of system. Because the simulation data set is so large, it must be managed
from secondary storage rather than held in main memory. Therefore, out-of-core solution
methods will be employed for extracting halos from simulation data. They require the
programmer or library designer to grapple with the long latencies and large block sizes
associated with disk access — kilobytes of data are typically delivered in milliseconds, but
smaller transfers cannot be made appreciably faster. Because performance of these systems
is modest, even at a few gigaflops, an innovative algorithm is being implemented that mixes
spatial and time domain extraction techniques.
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The halo finding methods have been applied to real data sets obtained from cosmological
simulations. Table ! lists the basic parameters of simulations which have been analyzed and
will be referred to later. The Megaparsec is the conventional unit of distance in cosmology.
1 Mpc = 3.26 x 10° light years. A 250Mpc cube contains about 5 million times the mass
of our own Milky Way galaxy. Thus, the individual particles in model 1 are about one
third the size of the Milky Way galaxy, and the halos that are extracted from the model will
represent galaxies and clusters of galaxies ranging in mass from approximately that of our
galaxy to several hundred times as large. Models 2 and 3 are sub-regions extracted from
larger simulations. The results from Model | have been applied to the study of elliptical
galaxies in (Pfitzner, 1996).

In the next section we describe the computational platform on which Halo World executes.
Then we describe the friends of friends (FOF) halo finding method in Section 3, and note
some shortcomings. This motivates the subsequent description of the new IsoDen method
in Section 4, based on kernel density estimation (Silverman, 1986). Section 5 explains
how the two methods have been implemented on parallel computers. Section 6 presents
timing results on a distributed memory paratlel computer with up to 512 processors. Finally,
Section 7 contains some specific plans for development of an out-of-core implementation
and a mechanism for tracking halos in time without recomputing them from scratch.

2. Clustered PCs for Space Science Computation

A new class of computing system is emerging as an important low cost replacement for
mid-level multiprocessors. Clustered PCs exploit the cost advantage of mass market man-
ufacturing while retaining the performance benefits of leading edge fabrication facilities.
The Beowulf project(Becker et al., 1995) has demonstrated that sixteen node systems can be
assembled for less than $50,000 that deliver performance levels, including operation rate,
memory and disk capacity, and memory and disk bandwidth, within a factor of 2 of systems
costing 20 times as much. The software environment is provided by the Linux system, a
POSIX-compliant, freely available and widely used operating system. Interprocessor com-
munication uses message-passing, accessed via a complete implementation of the standard
MPI application programmer interface. Beowulf systems can make multi-gigaflops level
performance available to a much broader community due to their low cost while providing
a user interface familiar to computational scientists working with typical massively parallel
processors. The Halo World project will use a Beowulf system to analyze /V-body simula-
tion data. This systern consists of 59 Intel Pentium-Pro processors (200 MHz clock) for an
aggregate system peak performance of 1 1.8 gigaflops, 7.5 gigabytes of main memory, and
182 gigabytes of internal secondary storage. Targeting the Beowulf class of systems will,
however, not preclude use of commercial massively parallel processors since use of standard
application programming interfaces and operating system services will permit easy porting
of the tools to other MPI/Posix platforms. In fact, most of the results presented here were
obtained on commercial systems like the Intel Paragon.
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3. The Friends of Friends Method

In the friends of friends (FOF) method of halo finding (Davis et al., 1985), one specifies
a linking length, Ay, and identifies all pairs of particles with a separation of Ay or less.
Such pairs are designated friends, and halos are defined as sets of particles that are connected
by one or more friendship relations, i.e., friends of friends. The linking length is usefully
parameterized as a density, and following (Summers, Davis & Evrard, 1995), we define a
density threshold:

2m

; ey

prin = %th’s!nk
where 17 is the average particle mass in the simulation. That is, p,, is the density of a
sphere of radius Ay, containing two average mass particles. In regions where the density
is greater than p,,;,, particles will tend to be closer together than 7y, and will be linked
together in the FOF method. Notice that the mechanics of the FOF method do not involve
density, but the effect of the method is to identify density peaks above the threshold pn.

A second parameter in FOF is the minimum number of particles, N, in a halo. The
purpose of N, 1s to reject spurious halos—i.e., groups of friends that do not form persistent
objects in the simulation. Chance associations involving larger numbers of particles are
less likely than those involving fewer, so by setting /V,,;, sufficiently large one hopes to
avoid most spurious halos.

Figures 1 and 2 show two sets of results, using Ny, = 10 and N,;, = 30, from FOF on
Model 3. These figures demonstrate two problems with FOF: joining halos together, and
poor distinction of small halos from noise. The first problem is that at the center of the
cluster, FOF finds one large halo which is clearly composed of several distinct halos. This
is because everything in a region where the density is above p,,;,, is joined into a single halo,
whether or not the region includes objects which are distinct at some higher density — a
problem first noted by (Bertschinger & Gelb, 1994). From the density plots it is seen that
there is no value of p,,;, which will distinguish the halos in the high density region without
missing some of the lower density halos.

The second problem is the arbitrariness and ineffectiveness of the IV, parameter. In our
test, the value of NV, = 10 is too small, since many of the small halos found have high
internal velocity scatter, and hence are not bound (c.f. figure 2 lefi middle panel). Ata
higher N, of 30, (figure 2 right panels) most of the spurious halos are rejected, but one
remains, and in addition several real (but small} halos have been rejected.

3.1, Rejecting halos based on the minimum number of friends, Ny

We suggest here a simple improvement. Replace N, with a new parameter, Ny, and
only accept halos that have at least one particle with at least N, friends. The advantage
Of Npnin 0ver Ny, is that diffuse, relatively low-density linked groups are more likely to be
rejected, while small but compact clumps may stiil be accepted as real halos. The effects
of Njmin in Model 3 are shown in the left hand panels of Figure 3, using Ngi = 10, In
this case all of the spurious halos are rejected, and more real halos are accepted than for
Nmin = 30.
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Figure 1. Particles in Model 3, and the central halo found by FOF in this model. These panels illustrate the
difficulty of graphically representing data that samples a six-dimensional space (three position and three velocity
components). In each panel the horizontal and vertical axes each represent one degree of freedom, and each
particle contributes a single dot. In all panels, the horizontal axis is an arbitrary spatial coordinate (in this case. the
y-coordinate). The panels on the left show all of the particles in the model; those on the right show the particles
in the single most massive halo found by FOF. The upper panels show particle positions, projected into the spatial
y-z plane. The middle panels show the same spatial coordinate and one velocity coordinate. The lower panels
show the density (as calculated by IsoDen according to equation 2; see Section 4) and the same spatial coordinate.
The lower panels emphasize the spatial variation and complex hierarchy of densities. It is clear from the lower
right panel that the FOF method has failed to identify some of the substructure in the model, combining several
distinet halos into a single halo. The horizontal line in the lower panels indicates the value of gy, corresponding
to the Ay, used for FOF,

3.2.  Rejection based on binding energy

An alternative approach to rejecting spurious halos is to use the actual particle velocities
to directly calculate whether putative halos are gravitationally bound. We do this using an
“evaporative” method which is almost the same as that used in the DENMAX algorithm
(Bertschinger & Gelb, 1991; Gelb and Bertschinger, 1994). In this method each putative
halo is considered in isolation, and the total energy of each particle is calculated: its
gravitational potential energy in the field of the other particles, plus its kinetic energy relative
to the center of mass of the halo. Then the particle with the highest energy is considered.
If the particle’s total energy is negative then so are all particles with lower energy, so the
ensemble is guaranteed to be gravitationally bound, and the halo is accepted. Otherwise
the particle’s energy is positive — meaning that it is on an orbit that will eventually remove
it from the neighborhood of the halo. The particle is removed from the halo (“evaporated™)
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Figure 2. As Figure 1, showing halos other than the central halo, as found by FOF with Np;,, = 10 (on the left)
and N, = 30 (on the right). The number of halos in each case is indicated at the top left. The large spread in the
velocity coordinate in the middle panels indicates that even though some groupings of particles have high spatial
density, they may not be gravitationally bound, and hence do not constitute a persistent object in the simulation,
Thus, the middle panels suggest that many of the selected halos on the left, and at least one of those on the right are
spurious. The lower and upper panels, however, indicate likely structures on the left (identifiable with N, = 10},
which are rejected by the choice of Ny, = 30 on the right. Thus, neither value of N,;;, is entirely satisfactory.

and the process is repeated, recalculating the energies of the remaining particles to account
for the loss of the removed particle. The process continues until either the halo is accepted,
or the number of particles remaining drops below some minimum, in which case the halo
is rejected. (In the results included in this paper the minimum number of particles is
set to 10.)

The evaporative method can be considered more correct that the simple Ny, and Nyyip
methods {in terms of directly addressing our definition of a halo), but it does involve
significantly more computation. Fer each halo containing NV}, bodies, evaporation requires
O(N}) operations. To save time, we assume that halos with very many particles (say
Np, > 1000) are bound, since this is almost certainly the case. Results using the evaporative
method in Model 3 are shown in the right hand panels of Figure 3. The method is very
good at discriminating between genuine and spurious halos, and finds eleven genuine halos
compared with only eight found by Ny, = 10.
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Figure 3. As Figure 2, but using the two alternative methods for rejecting spurious halos as discussed in the text.
On the left are results for Ny,,;, = 10, and on the right are results using the evaporative method. The evaporative
method finds 11 halos, all of which are guaranteed (by construction) to be gravitationally bound. In contrast the
method with Ny, = 10 requires much less computation, but finds only 8 halos (not as good as the evaporative
method, but better than the conventional N, method, see Figure 2),

4. The IsoDen Method
4.1, Basic IsoDen Method

The main aim of the IsoDen method is to improve on FOF by identifying halos over a
wide range of densities, thereby exploiting the full dynamic range available in the data. The
motivation is similar to that of the DENMAX algorithm (Bertschinger and Gelb, 1991, Gelb
and Bertschinger 1994), but the procedure is substantially different. Another related method
is presented in (Zurek et al., 1994), but it is restricted to spherical isodensity surfaces. In
some respects IsoDen corresponds to applying the FOF method at a range of densities or
linking lengths, a course suggested by (Davis etal., 1985), but in an integrated and consistent
way.

The idea of IsoDen is to actually calculate a spatial density field defined by the particles,
and then identify halo centers as local peaks in this field. Isodensity surfaces are grown
around each center, to find those particles belonging to each peak. When the isodensity
surfaces of different centers touch, a new composite halo and isodensity surface is created
that encompasses the two constituent peaks. In order for the method to work, the density field
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derived from the particle distribution must be reasonably smooth, so that the interpretation
of the method in terms of isodensity surfaces is valid.

The density at each particle, p;, (i ranging from 1 to N}, is calculated as the sum of the
masses, m;, of the nearest Ny, particles, divided by the volume of the sphere enclosing
those particles. This is simply k-nearest neighbor density estimation with & = Ny
(Silverman, 1986).

1
3
©Nkern € {Niern (i)}

P = m;, )

)
3mh

where k; v,... is the distance from particle 4 to its N nearest neighbor and the sum
is over the Ny, nearest neighbors of particle i. The variable smoothing scale implicit in
nearest neighbor estimation is important because of the large range in densities present in
the simulations. By using the nearest neighbor method with, e.g., Ni.m = 12, the local
resolution in the density is tailored to the actual resolution available.

In principle the IsoDen method could use alternative density measures which satisfy the
requirement of spatial continuity. One possibility is the phase space density: the mass
per spatial volume element per velocity volume element. This may be advantageous for
cosmology simulations, because low density halos generally have small internal velocities,
(e.g., see Figures | to 4) and hence have similar phase space densities as halos with higher
spatial density. Other density estimation techniques are also viable, c.f. (Scott, 1992),
and may be more appropriate in other problem domains. We have experimented with the
generalized nearest-neighbor technique (Silverman, 1986) but find that for the same level
of uncertainty in the density field, it is more computationally expensive.

The isodensity surfaces are defined implicitly by a graph-connectivity criterion similar to
that used in FOF. Each particle is implicitly linked to [V, nearest neighbors, where N
is a parameter of the method. An isodensity surface is defined by taking ali the particles
above some fixed density that are also linked together, as in FOF. The value of N, should
be large enough that all particles are linked together when all particles are considered, i.e.,
the isodensity surface at zero density should comprise the entire system. Ny, should not
be unnecessarily large, since this would compromise the spatial resolution of the method.
In practice values of 12 to 24 have been successfully used. Note that isodensity surfaces
are not directly calculated in the method (which is explained algorithmically below), but
rather are a useful concept for understanding the method.

Once densities and linking lengths have been calculated, the particles are sorted by density,
and then considered in order from highest density to lowest. Our goal is to assign each
particle to a halo, which are numbered sequentially from zero. The halo number for each
particle is calculated based on the halo numbers of the higher density particles to which it
is linked, as follows:

o Ifthe particle under consideration is not linked to any other particles with higher density,
then a new halo is created and the particle is assigned to it.

e Ifthe higher-density linked particles all betong to the same halo, then the new particle
is assigned to that halo as well.
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e Otherwise, the linked particles with higher density belong to two or more distinct
halos. In this case the pre-existing halos overlap at the density of the particle being
considered. A new composite halo is generated to represent the overlap of those halos.
The membership lists of the overlapping halos are recorded, and then all the particles
in the overlapping halos, along with the particle under consideration, are reassigned to
the new composite halo.

This procedure results in a tree of halos, where the leaves correspond to the central regions of
distinct halos, and the internal nodes correspond to composite halos, defined by isodensity
surfaces, where various halos overlap.

4.2, Noise Suppression in [soDen Method

Inany local spatial region of the simulation there will be statistical fluctuations in the number
of particles. These fluctuations lead to errors in the calculated density field (relative to the
hypothetical underlying mass distribution being sampled by the N-body particles). Such
errors will result in “noise peaks”, and so as with FOF, IsoDen requires a method for
rejecting spurious halos. The evaporative method discussed for FOF is effective for this
purpose, but requires considerable computation. As an alternative, we describe a simple
statistical method which is unique to [soDen and quite effective.

The statistical method requires that one be able to calculate the statistical uncertainty of
the density estimate at each particle. For the kernel density estimation described above,
the uncertainty can be estimated by assuming that the underlying density distribution is
roughly uniform on scales that contain Nje, particles, and that the particle positions are
sampled at random from this density field. Then the uncertainty in the density is just due to
Poisson noise, and the statistical uncertainty, o;, is simply p;/+/Nier. That is, the relative
uncertainty, o;/ p, is a constant, 1/+/Nyep,. This is an important feature of nearest neighbor
density estimation: in high density regions the spatial resolution is improved (i.e. smaller
h;) while maintaining constant relative uncertainty in the density estimates.

When each new halo is created, the halo is designated tentative, and the particle that
creates it defines the halo’s central (peak) density, p.. Tentative halos will become either
genuine halos, or will be eliminated based on a statistical criterion. When a tentative
halo overlaps with another halo we apply a somewhat ad hoc criterion akin to a statistical
significance test. We compare p., with p,, the density at which the overlap is detected, plus
no,. the statistical uncertainty at the overlap density: i.e., if

Pe > Po+ N0, (3)

we accept the peak as genuine. Otherwise it is rejected. Since the probability distribution
of p. is somewhat difficult to define, we cannot precisely define the significance of this test.
Empirically, we find that “three sigma” peaks, i.e., n = 3 are almost always genuine in the
sense that they pass the physically motivated evaporative test.

If a tentative halo passes this test, it becomes genuine and is recorded as an independent
object (a leaf of the halo-tree) which is contained within the larger composite object that is
created by the overlap. If it fails the test, the tentative halo is rejected. In either case, all
particles in the overlapping halos are renumbered with the new composite halo-number. A
composite halo is genuine if and only if any of its component halos are genuine.
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4.3.  Limitations of IsoDen

One of the limitations of IsoDen is that there are several parameters whose value is somewhat
arbitrary: Nigpn, Numt, and the “significance” parameter n.

The parameter Ny, is particularly important since it determines how much smoothing is
done to the particle density field. In particular, IsoDen is unlikely to detect halos which have
fewer particles than Ny..,. Also, the peak densities and overlap densities, which are used
in the noise suppression method, will be affected by changing Nj..,. Notice that Ny, only
enters the density estimation step. An alternative density estimator might have different
parameters, but generally, some free parameter(s) in the density estimator will govern the
minimum size of peaks that are discovered in the density field.

The parameter N, has an effect similar to Ny, 1f, Ny is too large, then a bona
fide peak whose central particle is an Ny,-neighbor of a higher density particle will be
overlooked by the method. If Ng,, is too small, then overlaps are not detected at all, and
halos are detected in isolation rather than as part of a hierarchy. Our limited experience is
that the results are not strongly sensitive to Ny, in the range 12 to 24.

The “significance™ parameter, n, represents a tradeoff between failing to detect small
halos and wrongly “detecting™ spurious halos. Since the test is not actually a rigorous
statistical test, an appropriate value of n needs to be empirically determined, and the best
value may depend in a subtle way on the other parameters. It is even possible that the best
value could vary for different simulations or for different spatial or temporal regions of a
single simulation. One option could be to use the evaporative method, which is motivated
by the discipline-specific knowledge about the problem, to determine an appropriate value
of n in various circumstances.

Both methods for noise suppression make some assumptions about the nature of the
particle position and velocity distributions in N-body simulations — e.g. specific sorts of
randomness. While these assumptions are based on experience with the simulation data,
and seem reasonable, it is possible that they could be violated under some conditions.

The method used by IsoDen to estimate densities has been chosen from a practical point
of view as an effective way to deal with resolution in regions of vastly different density.
However there are alternative methods available for density estimation which we have not
examined, and would could ultimately prove even more effective.

4.4.  Test Results of IsoDen Method

Figure 4 shows results obtained using IsoDen for Model 3, using both statistical and evap-
orative methods to reject spurious halos. In this particular case all of the halos found by
IsoDen turn out to bereal, in terms of their internal velocities (when examined individually).
This is the case for both methods of noise suppression. Also, IsoDen distinguishes halos
even in the high density central region of the cluster — the single large central halo found
by FOF is split into 9 smaller halos by IsoDen (or 10 halos using the evaporative test).
All halos found by FOF using Np,,, or evaporative testing are also found by IsoDen. The
only difference between the [soDen results using the two noise suppression tests is that the
evaporative method identifies three extra halos which did not pass the significance test with
n=3
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Figure 4. Results of the IsoDen method for Model 3, using the same format as Figure 1. The pancls on the left
show results using the statistical noise suppression test: those on the right use the evaporative test. For each halo
only those particles with densities between pe, the halo peak (central) density, and p,, the density of the first
overiap of that halo, are shown.

5. Parallel Implementation

As presented in Section 4, the IsoDen method sorts particles in order of decreasing density,
and then examines them in that order to generate a list of halos. At first glance, this procedure
is inherently sequential, since changing the order of operations would significantly alter the
result. Thus, we are forced to create an alternative formulation that achieves exactly the
same result, but that allows for a mostly parallel implementation.

The initial step is the same. We calculate densities and linking lengths for individual
particles. This calculation uses the same techniques, and is implemented using the same
libraries, as the the density calculation required by the Smooth Particle Hydrodynamics
method {Warren & Salmon, 1995). By using the parallel tree libraries, it parallelizes imme-
diately. The library handles all data structure manipulation and explicit communication on
message passing parallel architectures. The library was originally designed to implement
paralle]l “Fast” summation algorithms, e.g.(Barnes & Hut, 1986), for the computation of
gravitational interactions in O{N log V') time, but the data structures are far more general.
The library has been ported to a wide variety of systems including message-passing and
shared-memory machines, as well as networks of workstations and uniprocessor systems.
In particular, the results presented here for FOF and IsoDen methods were obtained with
library implementations which managed all parallelism and data distribution on single and
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multi-processor SPARC workstations, a 32-node CM-5 at the Australian National Univer-
sity and a 512-node Intel Paragon at Caltech.

A crucial feature of the density-estimation problem is that the particle positions and masses
remain fixed throughout the algorithm, and thus may be freely copied between processors
without concern for coherence. In fact, the library addresses a slightly more general case
which occurs in dynamical simulations — particle positions may updated only after an
implicit or explicit barrier synchronization. That is, forces (or densities) are computed
under the assumption that all data is static. A barrier is reached, after which the positions
may be altered by the dynamics, followed by another barrier indicating that all positions
have been updated and another force calculation, etc.

The parallel tree library distributes the data so that a particular result, e.g., a density
estimate for a particular particle is computed by only one processor. The assignment
of particles to processors must satisfy two competing goals: the processing load must
be balanced, and the necessary interprocessor communication must be minimized. Load
balancing of highly irregular data sets is achieved by sorting particle positions along a
Peano-Hilbert curve (see Figure 7a), and then chopping the curve into Nprpcewsor €qual
pieces. This has the effect of achieving load balance while maintaining spatial locality (and
thereby minimizing communication overhead).

Neighbor-finding (and hence evaluation of equation 2), is done by constructing an adaptive
oct-tree with individual particles at the leaves and internal nodes corresponding to cubical
regions of space. The tree is traversed once for each particle in time proportional to logg N,
so that all neighbors are found in Nlog N time. In parallel, the tree is constructed with
“remote” pointers to cells that are stored on other processors. When a particular traversal
encounters such a pointer, a communication is initiated requesting the data from the remote
processor. The substantial latency of such requests is overcome by a) bundling requests
together into larger blocks before actually beginning interprocessor communication and b)
working on another branch of the tree while the request is being processed. Furthermore,
once requested, the contents of a “remote” pointer are stored locally, so that subsequent
visits to the same cell do not incur the cost of interprocessor communication. This explains
the value of spatial locality in the assignment of particles to processors. The neighbor-
sets of nearby particles have a great deal of overlap, so that the communication cost of
obtaining the neighbors from remote processors is amortized over all the local particles
that are neighbors of the remote ones. All of the rather substantial bookkeeping involved
is handled by the parallel tree library.

Upon completion of the density estimation phase, every particle has a list of IV, other
particles to which it is linked. Storing these lists for all particles at once would significantly
increase memeory requirements. Therefore, we traverse the tree multiple times rather than
exploiting the “obvious’™ optimization of recording explicit lists of linked particles.

For each particle, we identify the highest density neighbor (HDNY), i.c., highest density
member of the set of particles to which the given particle is directly linked. Some particles
are their own HDN. These are precisely the central particles which define p,. for the tentative
halos in the sequential formulation, and we give them a unique halo number.

Now we scan the list of particles until we have assigned a prefiminary halo number to each
particle. For each particle, we check its HDN. If its HDN has a preliminary halo number
assigned, then the particle inherits that preliminary halo number. If the particle’s HDN is
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not yet assigned, we revisit the particle again on the next iteration. Note that the graph
defined by the neighbor relationship is highly interconnected (every particle is connected
to Ny others), so only a few iterations are required to propagate the preliminary halo
numbers to the entire system. Some interprocessor communication is required at the start
of each iteration to propagate new information about particles that have been assigned halo
numbers on the previous iteration.

Next, we examine the set of particles and links again, and for each pair of preliminary halo
numbers, we identify the highest-density particle that is assigned to one of the two halos,
and is linked to a higher density particle that is assigned to the other halo. The particles
identified in this way are the overlap particles from the sequential formulation. Note that
most pairs of halos are not linked at all, so this step only requires O{Nj.;,) space. It is
easily accomplished by visiting all of the particle-particle links, and maintaining a sparse
data structure that records the highest-density particle so far encountered that links each
pair of halos, In paraltel, when all processors are done with their own data, these local data
structures are combined to produce a global structure.

Now it is possible to construct the tree of halos, where the leaves correspond to central
regions of isolated halos and the internal nodes correspond to composite halos that meet
at overlap particles. One sorts the overlap particles in order of decreasing density, and
defines a new composite halo for each overlap. As composite halos are created, the overlap
points merge, so that if A and B are merged into M, and they both overlapped with C,
then M also overlaps with C, at the maximum of the two previous overlaps between A-C,
and B-C. Noise suppression criteria can be implemented here as well, i.e., preliminary
halos may be regarded as tentative until their density exceeds a statistical threshold over
the background density, or until they pass the evaporative test. Construction of the tree
of halos is, unfortunately, inherently sequential, because the overlaps must be treated in
order of decreasing density. It is far faster than a naive implementation of the formulation
in Section 4, though, because we have identified the overlap particles in parallel, and it is
only the tree construction that is sequential. Furthermore, the tree construction only uses
data related to the overlaps. The much larger particle data set can be ignored while the
logical structure of the tree of halos is constructed from the maximum density overlaps. In
practice, il is acceptably fast, even on highly parallel systems. See Section 6 for details of
the scalability.

Once the tree of hales has been constructed, with density levels indicating where halos
merge into one another, it is a simple matter to distribute the tree to the processors in a
parallel system, and then assign each particle to a final, genuine halo in parallel. Starting
with its preliminary halo number (at a leaf of the tree), one simply ascends the tree of
halos (toward the root) until the overlap density is less than the particle’s own density. The
particle is assigned to the composite halo defined by this location in the tree.

Friends of friends can be implemented almost as a special case of IsoDen, using constant
kernel and linking lengths, and using the number of friends as a measure of density. In the
FOF case all halo overlaps result in the overlapping halos being merged together, and the
substructure before the overlap is forgotten.
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6. Performance Results

Figure 5 shows the halos found by IsoDen in Model 1. The halo finder ran for approximately
20 minutes on a 512 node Paragon at Caltech, and required over 5 gigabytes of memory.
This computation would have been prohibitively time-consuming on a uniprocessor system
— assuming we could have found one with sufficient memory!

Figure 5. The positions of halo centers as found by IsoDen from Model 1, projected into an arbitrary plane; the box
is 250 Mpe on a side. Only halos with central density at least 178 times the background density of the system are
shown, since lower density halos are poorly resolved for astrophysical purposes. There are 43,727 halos shown,
and a further 16,63} low density halos were identified.

Figure 6 shows some additional timing results from halo finding on a Paragon. Most of
the calculations are shown in the top panel, and show good scaling, which is expected since
for these calculations most of the parallelization is done effectively via the tree library. The
last few steps of the method, which are more difficult to implement in parallel, are shown
separately in the lower panel. Even for these steps the scaling is reasonable.

7. Future Directions

7.1, Out-of-Core Computing

The development of out-of-core techniques suitable for processing highly irregular, un-
structured data, such as are generated by cosmological N-body simulations, is crucial to

manipulating a dataset of sufficient size. We have recently obtained extremely promising
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Figure 6. Timing results for the IsoDen method. The time is the average CPU time on each processor, Npart is
the total number of particles, and Aproc the number of processors. The different point shapes indicate different
models (in particular, different Npart), from table 1: stars are model 1, triangles are model 2, and squares are
model 3. The dashed line indicates the slope for constant time independent of Nproc. The top panel shows the
time for all calculations up to and including the calculation of the overlaps of preliminary halos (see Section 5).
The lower panel shows the time for the remaining steps: the construction of the tree of halos, the application of
noise suppression tests, and the calculation of genuine halo numbers.

results applying parallel, out-of-core techniques to the irregular and dynamic treecode meth-
ods that are used within the N-body integrator itself (Salmon & Warren, 1997). Essentially,
the problem reduces to one of guaranteeing spatial and temporal locality so that access to
secondary storage is necessary only rarely, and once loaded from secondary storage, a
given datum is likely to be re-used many times in primary storage before being flushed.
The solution is exactly the same one that has been employed to good effect to achieve load
balance and tolerate latency in parallel implementations of treecodes — organize and divide
the data along a space-filling curve that approximately preserves spatial locality even if the
underlying data is highly clustered and irregular. The crucial observation is that by placing
the pages dynamically on disk in an order determined by a continuous space-filling curve,
e.g., a Peano-Hilbert curve, (see Figure 7) and ordering our access to data along the same
curve, we preserve the spatial and temporal locality in the algorithm. Since the space-filling
curve is continuous, objects that are near in space, and hence likely to be linked together
by the algorithms, are also near in primary or secondary storage. By visiting objects in
order along the space-filling curve, objects that were recently brought into primary storage,
either because they were directly addressed, or because they are on the same page as a
recently addressed object, are likely to be reused. Since the parallel implementation of the
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spatial halo finder uses the same data and control structures as the N-body code to tolerate
irregularity and achieve parallelism, it can be adapted to use out-of-core storage in the same
way that has worked for the N-body code itself.
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Figure 7. A path through the positions of 10000 highly clustered particles in two dimensions is shown in (a).
The path is obtained by locating each particle along a space-filling Peano-Hilbert curve. Levels 4, 6 and 8 of an
adaptive quad-tree are shown in (b}, {c), and (d). The squares represent “cells” in an adaptive quad-tree that is
used to compute densities and locate neighbers in O(N log V) time. The whole tree is obtained by “stacking”
these levels, along with those not shown, Again, the path connecting the cells is derived from a Peano-Hilbert
curve. In this case, the curve indicates the order in which data are stored in both primary and secondary memory.
Each level of the tree is stored separately, so that data within the same level is always contiguous. When particles
are visited in the order implied by (a), they cause pages to be moved from secondary storage which hold data
that is contiguous along the curves represented in {b), (c), (d). The orderings guarantee that the data is reused
many times before being discarded, allowing the algorithm to tolerate the modest bandwidth and extreme latencies
characteristic of out-of-core calcutation. (Two dimensions are used purely for ease of graphical representation,
The implementation is fully three-dimensional.}

7.2.  Adaptive Temporal Method for Halo Tracking

While the techniques described above provide high accuracy halo extraction tools, they
are limited to single-time, 3-dimensional slices through the overali data set. We estimated
that extracting halos from particle positions by this method will require tens of minutes
on the cluster of 16 PCs. This is not substantial, but when used across a data set of a few
thousand frames, the time to completion becomes prohibitive (several months). Therefore
an adaptive time domain algorithm is conceived and is being developed that augments the
pure spatial method.
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From an initial halo map derived from the spatial method, succeeding frames are used
only to adaptively track identified objects. A centroid for each halo is recomputed for each
frame and the population of particles is updated. This technique is very fast and requires less
than a minute per frame to compute. After on the order of a hundred frames, a full spatial
particle reduction is performed to rederive halos at that time step. These are correlated with
the projected objects from the temporal method. New objects are identified as a resultand a
partial temporal roll-back sequence is then performed (going backward in simulated time)
for those new halos, thus tracking them to their genesis.

8. Conclusions

We have presented a new IsoDen algorithm for finding halos in N-body cosmology sim-
ulations, and described an implementation on parallel computers. This new method has
advantages compared to the friends of friends (FOF) algorithm, which has also been im-
plemented in parallel. In particular the IsoDen method robustly finds density peaks even in
the high density central regions of clusters. Our tests indicate that these halos are “real” in
the sense of being gravitationally bound, persistent objects in the simulation, so the IsoDen
method is a genuine knowledge discovery process. The use of a statistical estimate of the
uncertainty in density estimation to distinguish real peaks from chance associations is novel
and effective, even though it lacks a firm theoretical foundation,

By implementing these methods on parallel machines we are able to use them to begin the
analysis of the massive datasets produced by modern high resolution N-body cosmology
simulations. This will allow us to address the task of accurately interpreting these simula-
tions, to understand the physical processes involved in the formation and evolution of dark
matter halos, and to compare the simulations to astronomical observations.

We also consider issues involved in implementing these techniques on inexpensive clusters
of commodity processors, using out-of-core techniques to eliminate the need for impracti-
cally large amounts of memory. Our implementation of the halo finding techniques in terms
of a parallel tree library originatly designed for N-body simulation suggests that out-of-core
techniques will be practical and viable. A tree library that uses out-of-core techniques is
under development, and will form the basis of a parallel, out-of-core implementation of
the FOF and IsoDen halo finders. Tracking halos in time, and correlating the results using
an ab initio halo finder like IsoDen only at widely separated times will further improve
performance.
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