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ABSTRACT

We describe a hypercube ray-tracing program for rendering computer graphics. For small
models, which fit in the memory of a single processor, the ray-tracer uses a scattered decompo-
sition of pixels to balance the load, and achieves a very high efficiency. The more interesting
case of large models, which cannot be stored in a single processor, requires a decomposition of
the model data as well as the pixels. We present algorithms for constructing a decomposition
based upon information about the frequency with which different elements of the model are
accessed. The resulting decomposition is approximately optimized to minimize communica-
tion and achieve load balance.

1. Introduction

Generaling computer images involves up to three steps. The first step, modeling, translates an idea
from the artist’s or designer’s mind into a form that the computer can understand, a model. The second
step, rendering, converts the model, which is described geometrically, into an image, a set of pixels to be
displayed on a video screen or in a photograph. The third stage, articulation or animation, introduces time
dependence into the model so that objects appear to change or move. In a still image, of course, the articu-
lation stage is not always necessary. It is only required for computer generated animation or simulations.

Ray tracing is an algorithm for rendering geometric models into arrays of pixel values. It simulates
the interaction of light rays with the elements of the model and uses classical geometric optics to determine
shading. In the simplest version of the ray tracing algorithm, each pixel in the image is evaluated by pro-
jecting a primary ray from an imaginary camera, or eye-point, through the point corresponding to the pixel
on the plane representing the surface of the display device. The ray is analyzed to determine which, if any,
of the objects in the model it hits. If it misses them all, the pixel is colored to show the background of the
scene. If the ray hits one or more objects, then only the intersection closest to the origin of the ray is con-
sidered further. In this way, primary rays are used to implement a rather costly hidden surface removal
algorithm, The color of the pixel is determined by projecting rays from the point of intersection to the light
sources in the model. If these rays reach the light sources without hitting any obstructing objects, then sur-
face propertics of the object, and the properties of the light contribute to the color of the pixel according to
standard shading models. 1 Otherwise, the point is in shadow with respect to the light. In addition, if the
object is reflective or transparent, additional rays are also projected in the direction indicated by Snell’s
law, and/or in the direction indicated by Hero’s law (angle of incidence is equal to angle of reflection),
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These secondary rays are evaluated just as primary rays, and contribute linearly to the color of the pixel.
They may in turn generate further secondary rays until the contribution to the original pixel has fallen to
below some minimum threshold.

This optical approach to rendering yields some very desirable effects. Accurate rendition of refracted
images, reflected images, and shadows is handled implicitly, effects which are extremely difficult to obtain
with other commonly used rendering schemes, More complex optical effects, including motion blur of
moving objects, depth of field, and penumbras of shadows are also computable via ray tracing,? and are
generally not donie with other renderers. These effects add greatly to the realism in an image, providing ray
tracing with its popularity, despite its substantial computational costs.

Since each pixel is computed independently, ray tracing is an extremely costly rendering algorithm,
Other algorithms make use, in one way or another, of the fact that pixels near to one another in a scene
have similar properties. When ray tracing was first developed for use in computer graphics,? the general
consensus was that it was too slow to use except in highly specialized applications. Since then, many tech-
niques have been found to speed up the algorithm, and computers have become much faster. Still, ray trac-
ing uses huge amounts of expensive computer time on some of the worlds fastest computers.

Whitted ! determined that 75% of the execution time of the simple ray tracing algorithm was spent in
testing objects for intersection with rays. Since then, two general approaches have been found for greatly
reducing the number of intersection calculations needed for each ray. They are tree-based methods ("tree-
tracing") 456 and space-based ("space-tracing”) 7+8.9:10.11 methods, Recently, the two approaches have
been combined into a hybrid method that potentially retains the advantages of each.? In the space-based
methods, the whole model is bounded by a rectangular prism, This prism is then broken into smaller and
smaller prisms or cubes until the cubes contain only a few objects. This operation is done as a pre-
processing step before any images are calculated. Intersection testing is done by testing each cube along the
given ray’s path. If such a cube is hit and it contains objects, then those objects are tesied for intersection
with the ray. This method has the desirable feature that objects are tested approximately in order of dis-
tance from the origin of the ray, so once an intersection has been found, most of the remaining cubes need
not be tested. It does, however, spend a large amount of memory on empty cubes. Dippé and Swensen 13
analyzed how to break up these cubes so that a parallel machine could use a space-tracing method and
found severe load balance problems. Their solution was a dynamic load balance scheme that changed the
shape of the cubes, making them much harder to test for intersection. This defeated many of the advantages
of the original sequential algorithm,

The other general class of improved ray tracing methods are tree-based. In these methods, each
object is surrounded by a tightly fitting, but geometrically simple volume. Before testing the object itself
for intersection (which might be expensive), the volume is tested. These volumes are chosen to be very
simple objects so that rays which miss the volume completely, and hence miss the enclosed object, can be
rejected relatively cheaply. It is natural for sets of bounding volumes to be enclosed by still larger
volumes. In this way, intersection with large parts of the model can be ruled out by a simple test with a
high-level bounding volume. A tree of bounding volumes is constructed by placing bounding volumes
around bounding volumes until one bounding volume, the root of the tree, surrounds the entire model. In
these methods, intersection testing is done by a depth-first traversal of the tree, abandoning a branch when-
ever a bounding volume is missed entirely. Since this method was suggested by Rubin and Whitted,? many
improvements 1o it have been found. Kay and Kajiya® suggest a new type of bounding volume as well as
varying the order in which the tree is traversed, sorting untested nodes in a heap, so that the closest volume
is tested first, recovering some of the advantages of space-racing. Weghorst, et. al. © suggest varying the
bounding volume types within a scene to better suit the primitives. Goldsmith and Salmon 14 suggest ways
to build the tree of bounding volumes so that the sets and subsets are chosen well. Both space-tracing and
tree-tracing techniques are still improving, but due to lower cost in space and the desire to avoid the prob-
lems Dippé and Swenson encountered, we chose to investigate parallel implementations of tree-tracing
methods.

Because of the independence of the subtasks of the ray tracing process, it is a natural candidate for
parallel computation. Some work has been done in the past in this regard. Dippé and Swensen!? discuss
the distribution of three-dimensicnal grids and methods of load balancing them on theoretical concurrent
machines. Nishimura et. al. !> show how a pipelined multimicroprocessor  with programmable
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interconnects can be used to take advantage of the separate steps in the algorithm. Ullner 16 describes a
VLSI implementation of the same sort of similar pipelined hardware.

The technology to design and build parallel hardware has far outpaced the development of system
software in recent years. Developing a parallel ray tracer has led us to some insights into the requirements
of a wruly parallel operating system for parallel hardware systems. In fact, in many cases we had to design
and implement operating system software before proceeding with the ray tracer. The areas in which the
ray tracer’s demands were not met by available systems were the role of the host processor, multitasking,
and the availability of common operating system software to aid debugging, I/0, and other frequent com-
puting tasks.

2, Decomposition

The central problem in the design of software for parallel computers is the identification and utiliza-
tion of parallelism in the algorithms. Indeed, the choice of algorithm can make this task either fairly
straightforward or essentially impossible. In the case of ray tracing, one source of parallelism is obvious.
Each pixel constitutes a separate and independent problem. Distinct pixels can easily be computed on dif-
ferent processors, requiring only the communication to assemble the result into a single image. This paral-
lelism is of sufficient magnitude to fully utilize any large grain-size parallel processor that will be built in
the near future, since even relatively modest images contain upwards of 250,000 pixels. Exploiting paral-
lelism at this level alone, however, leads to problems with distributed memory processors. State-of-the-art
graphical models can contain millions of primitive objects, requiring hundreds of megabytes of storage.
Even modest models would not fit into the memory of a single NCUBE or iPSC processor. A priori, it is
not possible to know which parts of the model will be needed by any given pixel. Hence, every processor
would potentially need access to the entire model, which unfortunately, is out of the question due to the
lirited memory of each processor. To render large models, we will need to distribute the model data as
well as the computation. The importance of this can be seen vividly in the case of the NCUBE machines.
Each processor has 512 kilobytes of memory, enough to store a complete simple model, but not enough for
a large one. A fully configured machine, with 1024 nodes, has 512 megabytes of memory. Few applica-
tions will run out of memory on such a machine. An important consideration is that the distribution of the
model data over the nodes of the machine strongly affects how well balanced the computational loads are
on the different processors, and ultimately determines whether the machine is efficiently used. A careless
distribution will lead to severe load imbalance and poor overall performance, so it is important to carefully
minimize the load imbalance in the distributed data.

In the context of parallel computing, a decomposition is an assignment of work to processing ele-
ments. Currently, no tools exist to automatically decompose a sequential program so that it exploits paral-
lel, distributed memory hardware. Parallelism must be "designed into" the program from the start. The first
step in designing algorithms for use on parallel machines is to decide on a decomposition, i.e. to divide the
complete task into smaller sub-tasks that can be completed relatively independently. The ultimate goal of a
parallel decomposition is to perform the desired computation in the least time, making as efficient use as
possible of the parallelism in the hardware. This goal is achieved by:

1)  Minimization of interprocessor communication.
2)  Minimization of processor idle time.
3)  Use of inherently fast algorithms.

Interprocessor communication is expensive on today’s hypercubes. For the machines we have used,
the communication of a word of data has about the same cost as one to ten floating point operations. Thus,
minimization of communication takes on an importance similar to the elimination of unnecessary floating
point operations. Clearly, it is not the only criterion by which to judge an algorithm, but it provides a very
useful rule-of-thumb. We will find that the ray-tracing of simple scenes, i.e. those for which the entire
model fits in a single node, requires little or no communication. Algorithms to minimize interprocessor
communication become important in the parallel ray tracer when the model is too large to fit in a single
node.

The second issue in decomposition is minimization of idle time. This is often referred to as "load-
balancing” because idle time is normally reduced when the computational load is distributed evenly
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amongst the available processors. Simply balancing the load is necessary, but not sufficient, to minimize
idle time. One must also ensure that no processor waits unnecessarily for another to compute an intermedi-
ate result. Load balancing will be important in all aspects of the parallel ray tracer.

2.1, Image Decomposition

Ray tracing is an ideal algorithm for a parallel computer. Indeed, the fundamental source of its slow-
ness, the fact that information about the scene is not retained from one pixel to the next, makes part of the
decomposition extremely easy.

The algorithm is decomposed by assigning different pixels to different processors. If we assume, for
the moment, that each processor has access to the entire model, then the processors may compute their
respective pixels with absolutely no communication. Interprocessor communication is obviously minim-
ized by assigning a fixed number of pixels to each processor at the beginning of the computation. Then,
there is no need for communication at all during the bulk of the computation. The processors may need to
communicate again at the end of the computation when accessing a frame buffer or mass storage device.
Even this may not be necessary if suitable parallel I/O hardware is available.

The simplest assignment of pixels to processors is probably the tiled decomposition shown in Fig-

ure I,
T[] 1]2]12 (2|2 ]3(3[3[3}4[4]4]4
11111212 (212133 [3[3|4(4[4]4
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Figure 1.Tiled Decomposition

Under this scheme, each processor computes a contiguous rectangular subset of the entire image. Output is
particularly simple because most standard image file formats allow for "tiling" in exactly this way. Despite
the fact that each processor computes an equal number of pixels, this decomposition suffers badly from
load imbalance. The root of the problem is that there is a large variation in the cost of computing a single
pixel. If these variations were uncorrelated, the load imbalance would be acceptable, (as we shall show
below) but in real images, expensive pixels tend to be near one another in the image, especially near the
center of the image. Assigning exclusively central pixels to some processors, while assigning exclusively
peripheral pixels to others is very likely to lead to significant load imbalance. It is easy to produce images
for which the load is balanced, but most interesting images will suffer severe load imbalance with the tiled
decomposition.

The scattered decomposition of Figure 2 is a partial solution to the problem of load imbalance due to
coherence in pixel complexity. In this decomposition, each processor is responsible for pixels which are
scattered across the entire image. The worst case behavior of the scattered decomposition is identical to
that of the tiled decomposition. In principle, one processor could still be assigned all the work, by an
unfortunate distribution of complexity in the image. The advantage of the scattered decompositions is that
such behavior is extremely unlikely. Visually interesting images are very unlikely to have coherence on
exactly the same scale as the scattering, and hence are unlikely to suffer from extreme load imbalance.

The scattered decomposition still suffers from load imbalance due to the statistical nature of the time
to compute a pixel. It is possible to estimate the magnitude of this residual load imbalance.!” If the time to
compute each of the pixels assigned to a processor is an uncorrelated random variable with mean f,;, and
root mean square deviation o,,,, , then straightforward application of the central limit theorem demonstrates
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Figure 2.The Scattered Decomposition
that the load imbalance will be less than some value !, with confidence ¢, where

[0 )
R
pix
A= Npis_
Nproc

and the constant of proportionality is of order 1.

Our experience with ray-traced pixels is that o,;, and ¢, are comparable. The distribution of pixel
times is a fairly rapidly decreasing function of time, whose width is approximately equal to its mean. The
load imbalance in such cases is thus typically a few times the reciprocal square root of the number of pix-
els assigned to each processor. Table 1 shows the observed value of the load imbalance for several images.

pixels per Load Imbalance G
5 pix
name | processor number of processors nx byix )
n 4 16 64

solids 1024 0.6% | 20% | 2.7% 3.9%
hcube 1024 18% | 6.7% | 7.5% 33%
room 1024 05% | 09% | 1.0% 1.8%

Table 1. Values of load imbalance.

In order to achieve better load balance, the decomposition must be modified as the computation
progresses, so that processors which find themselves too busy can shed load onto less busy neighbors. In
principle, load shedding can lead to almost perfect load balance, but there is communication overhead
because the processors must communicate to inform one another, or a central dispatcher, of their relative
busyness. Since the load imbalance is typically less than 10% for interesting images on currently available
machines, the additional communication overhead could easily consume all that was saved by better load
balance. We will defer the discussion of run-time load balancing until after the discussion of data decom-
positions, because the potential benefits will be much greater at that point. For models which do not
require distribution to fit in the memory of the parallel processor, we consider the load imbalance achieved
by scattering to be perfectly adequate, and do not pursue additional balance at the expense of additional
software complexity.

2.2 Object-Based Decompositions

As discussed in the introduction, the basic data structure of sequential tree-tracing methods is a sin-
gle tree of bounding volumes. The leaves of the tree contain all the information about the model and its
internal structure is of fundamental importance in minimizing the work required to identify ray-object
intersections. We now consider the problem of distributing the tree in order to spread the model data
across the memory of multiple processors. For well constructed trees, a significant fraction of the intersec-
tion testing calculation takes place with bounding volumes that are near the root of the tree. Figure 3.
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name polys spheres cyls lights size(bytes) |t (msec) o, (msec)
solids 64 1 1 2 11380 209 264
hcube 1 72 108 1 41436 386 1 410
room 116 0 114 4 63972 655t 373
balls 1 7381 0 3 1.25M 145% *
mountain | 8192 4 0 1 1.70M 232% *

* times for individual pixels could not be determined because of multi-tasking
1 nine primary rays were used per pixel for anti-aliasing
f values taken from 16-processor timings. See also Table 4.

Table 2, Model Statistics

shows the frequency with which bounding volumes are intersected as a function of depth in the tree for the
“room” model. The bounding volumes near the root of the tree generally do not contain objects, so they
require only about 30% as much space as a typical leaf node containing a simple object. Since the infor-
mation in these nodes is used very often, it is important that they are readily available to each node. Since
there are relatively few such nodes, they can be placed in each node of the hypercube without unacceptable
memory cost. On the other hand, individual objects (stored in the leaf nodes of the tree) are needed only
rarely, so these lesser-used objects can be stored only once, and accessed by message passing or remote
procedure call without unacceptable communication overhead. Thus, we have chosen to include the root
bounding volume of the model tree in each processor, along with some of its closer descendants. We call
this data structure the forest, in contrast to the sub-trees which are stored in individual processors. The ter-
minal nodes of the forest contain information which can be used to locate sub-trees which reside on other
processors. Many of the rays that hit no objects can be completely resolved in the forest, without recourse
to model data stored in sub-trees on other processors.

]
L]

# infersections o

e

Depth

Figure 3.Number of intersections per ray vs. depth for the room model

A decomposition consists of specification of a forest, and a mapping from the terminal nodes of the
forest onto the set of processors. In principle, the mapping can be many-to-many, but for simplicity we
only consider many-to-one mappings. That is, several sub-trees may be assigned to a single processor, but
any given sub-tree will be assigned to exactly one processor. The optimal decomposition, of course, fits
within the memory limitations of the processors, balances the computational load and minimizes communi-
cation overhead. The memory constraint is absolute, while some tradeoff is allowed between load-balance
and communication. We may usefully consider the decomposition a two-step process, in which we first
determine the sub-trees, and then assign individual sub-trees to processors.

We cannot hope to achieve a desirable decomposition of the hierarchy of bounding volumes without
being able to estimate the memory requirements, computational load and communication communication
requirements of a proposed decomposition. That is, we must have some predictive criterion with which we
can judge one decomposition as being superior to another. The easiest of the desiderata to quantify is
memory. Each node of the original tree which remains in the forest uses a fixed amount of memory in each
and every processor. Similarly, each node which is assigned to a sub-tree uses the same amount of
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memory, but only on the processor to which it is assigned. It will be convenient to define the quantity §,
which is the size of the entire sub-tree rooted at node ».

The next criterion to quantify is the computational load associated with each of the sub-trees. First,
we assign to each node in the tree a probability. This probability measures the fraction rays generated in a
"typical" scene that intersect with this bounding volume. We have found that to a very crude approxima-
tion, one can estimate that the probability that a volume is hit is proportional to the volume’s surface
area.!4 This estimate is, of course, very easy to compute. Unfortunately, it is subject to very large fluctua-
tions, and it is inadequate for use in the decomposition algorithm. We have found that a good estimate of
the probability is obtained by ray-tracing the image at very low resolution, i.e. 32x32 pixel resolution.
Although this estimate is also subject to fluctuations, they do not effect the final decomposition as
adversely as those from the area estimate. The cost of such a low resolution rendering is small, even
though it is done as a pre-processing step on a sequential processor. In comparison with an anti-aliased
512x512 resolution image, the pre-processing stage constitutes about one two-thousandth of the total work.

Given the probability that a node is hit, one can compute the work that is entailed by the presence of
the node on a processor. Once a node is hit, an intersection test must be performed with each of its chil-
dren. If the node is a terminal node of the tree, then an intersection test must be performed with a primitive
object in the model. If we take the unit of work to be the cost of an intersection calculation with a bound-
ing volume, then the work, w, associated with node n is given by:

w, =p,c(n} ifnisnotaleaf
Wp = PaWorim(n) if nisaleaf

where ¢ (r) is the number of children of node n, p, is the probability of hitting node n, and w,,,,, (1) is the
amount of work required to perform an intersection with the primitive object associated with the leaf node
n. Of course, the type of bounding volume, the type of leaf and the details of both the hardware and
software implementations determine the values of w,,;,(n). We used rectangular prisms with faces per-
pendicular to the coordinate axes as bounding volumes and spheres, cylinders and polygons as primitive
objects in the models. In our NCUBE implementation, the costs were approximately 2.5, 6.0 and 12.0
bounding box intersections per sphere, cylinder and polygon intersection, respectively. In analogy with §,,
we define the quantity W, , which is the sum of the w; for all nodes i which are descendants of node n. If
node 2 is a terminal node of the forest, then W, is an estimate of the amount of work which will be per-
formed on the processor to which the corresponding sub-tree is assigned.

The third factor to be quantified is the interprocess communication. The relative importance of com-
munication depends on the hardware and software envircnment in use. Each time a request is made to
compute the intersection of a ray with a sub-tree, a certain amount of data must be transmitted to the pro-
cessor that stores the sub-tree, This data consists of seven floating point numbers (origin (3), direction (3)
and distance to nearest previously determined intersection (1)). On the machines we have used, and within
a software environment that allows for arbitrary, asynchronous message forwarding, the time to transmit
such a message is approximately equal to the time to perform several bounding volume intersections. The
exact cost depends on whether the recipient of the message undergoes a context switch, and the distance
the message must travel. Itis only weakly dependent on the size of the message, because the time to send
such short messages is dominated by "message latency” rather than "bandwidth”. This suggest that minim-
ization of the total number of interprocessor communications is crucial to a high-performance implementa-
tion.

Communication occurs each and every time the bounding box of terminal node in the forest is inter-
sected by a ray. A description of the ray must be sent to the processor to which the sub-tree is assigned,
and the result of the ensuing calculation must be sent back. Thus, each terminal node of the forest incurs a
communication cost proportional to the number of rays that intersect that node’s bounding volume. We
can estimate the communication cost, C,, , of cutting the tree at node n as

Co = pn
where p, is, as before, the probability of a ray hitting the bounding volume of node n.
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The difficulty of the distribution problem is now clear. The communication cost associated with
making a cut in the tree decreases as one descends the tree, because the bounding volumes become smaller,
and are less likely to be hit. On the other hand, cuts near the leaves of the tree are less effective in decreas-
ing the size of the forest and conserving memory, and more cuts must be made to satisfy the memory con-
straint. Finding the set of cuts that minimizes the total communication, while satisfying the memory con-
straint is extremely hard.

We now return to the basic problem of decomposing the model tree. We divide the problem into two
phases. The first is choosing the sub-trees; the second is allocating the sub-trees to specific processors.
Since the second problem is already NP-hard, (it is analogous to the weighted bin packing problem)!8 truly
optimizing the selection of sub-trees, which depends on the solutions to the allocation problem, is not feasi-
ble. Nevertheless, the dependence of the sub-trees selection problem on the allocation problem seems to be
weak, so we treat the problems as independent.

2.2.1. Choosing the cut-points

Deciding on a set of sub-trees is equivalent to selecting a set of nodes from the model tree which will
be the terminal nodes of the forest. We shall refer to these nodes as cut-points, which suggests the fact that
the model has been cut at these locations, and that the sub-tree that has been cut off must be allocated to a
single processor. According to the analysis of communication above, a cut-point at node n, entails com-
munication proportional to p, . The problem is to select a set of cut-points so that:

a)  noelement in the set is an ancestor of any other element

b)  the forest and sub-trees fit in the available memory, M,,,;. At this stage, we insist that the model
and sub-trees fit mto a fraction, f, of M,,,; so there is more freedom when we allocate the sub-trees
to processors. The decompositions used in this paper were obtained with a value of f of 95%.

¢}  the sum of C, for all cut nodes n is minimized.
An approximate solution is obtained by the following procedure:

1) Sort the nodes of the model tree in order of increasing p,. Remove from consideration any node
with §, larger than a fraction, g of the memory of a single processor. This is to allow room for the
largest sub-tree to fit in a processor alongside the forest. We used a value of 20% for g.

2)  If the resulting forest and sub-trees satisfy the memory criterion, (b), FINISH.

3)  Select the first node, n, from the sorted list and place a cut at that node. If node n is the ancestor of
any node currently containing a cut, delete the old cut. In addition, delete n and all its descendants
from the sorted list since they are no longer candidates for cut-points.

4)  For each ancestor, a, of node n, reduce the value p, by an amount equal to P.., and adjust the sorted
list accordingly.

5) returntostep 2.

The purpose of step 4 is to quantify the fact that it is desirable to place a cut at a node which is the
ancestor of other cut-points. When the new cut is made, all the other cuts disappear, and the effective cost
of the new cut is its true cost, C, minus the sum of all cuts previously below it.

To evaluate the termination criterion, a running sum of total memory usage must be maintained as
cuts are inserted and deleted. This is straightforward because a cut at node n decreases the size of the
forest by by (Npc=1)S,. A forest with no cuts has total size Nproe Sroor 1f the parallel processor has too
little memary, the procedure will exhaust all the nodes in the sorted list without satisfying the termination
criterion.

Without knowing the globally optimal solution to the selection problem, it is difficult to precisely
measure how well our algorithm is working. For purposes of comparison, in Table 3, we show the amount
of predicted communication in the decomposition selected by the algorithm compared with that obtained
by placing cut-points at random until the forest is small enough to fit in a processor.
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per proc. | random Number of processors
model name

data size | decomp. 16 32 64 128
balls 120kb 1.683 0.744 | 0594 | 0.540 | 0.538
mountain 200kb 2.251 0790 | 0.675 | 0.647 | 0.647

Table 3. Communication in units of expected ray transmissions per ray evaluation.
2.2.2. Distribution of sub-trees

The time it takes the parallel processor to render the entire image is proportional to the work in the
forest (i.e. the work associated with the root node minus that associated with all the sub-trees) plus the
sub-tree work allocated to the most heavily burdened node. Since the whole ensemble of processors is no
faster than its slowest component, it is crucial to balance the load. Obviously, the best possible situation is
one in which all processors finish at the same time. Usually, no such solution exists and we must search for
a distribution of sub-trees to processors which minimizes the load imbalance. Unfortunately, the problem
is equivalent to the "weighted bin-packing problem", which is known to be NP-hard. Nevertheless several
O (N yee (108(Nproc ) + 108Ny, )) time algorithms exist that appear to perform adequately. One such algo-
rithm is known as the "best fit decreasing” algorithm. The sub-trees are first sorted in order of decreasing
size, taking time O (N, 1og(N,..)). Then, one at a time, they are considered for assignment (o processors.
Each sub-tree is assigned to the least loaded processor for which the memory constraint is not violated. If
the list of processors is managed as a heap, the least loaded processor can be found in constant time, and
the heap restructured in time O (Iog(N,,,)). Sometimes, no processor remains with enough space for a
tree. Unless memory is extremely tight, sub-trees selected by the cut selection procedure of Section 2.2.1
will be small, and will always fit in the available memory. In the event that they do not, the cutting algo-
rithm should be re-applied, with a smaller value of f. A solution to the packing problem can then usnally
be found.

3. Object Decomposition: Implementation

Here, we present in somewhat more detail the steps involved in computing the color of ray when the
model tree is split into a forest and sub-trees. As in the sequential case, the ray is tested against the bound-
ing volumes that constitute the forest in depth-first order. If the ray fails to intersect some node, further
processing on the descendents of that node is abandoned. Whenever a ray reaches a terminal node of the
forest, and intersects with the bounding volume at that node, a message must be sent to another processor
requesting additional processing. This message contains the origin and direction of the ray, and the dis-
tance from the origin to the closest "hit" found so far. Eventually, a message is returned, indicating
whether the current "hit" was improved on the remote node, and if so, additional information describing the
object that was hit.

While computations are being performed by another processor, several options are open to the
requesting processor: it can wait for a reply, it can work on another pixel, or it can continue the traversal of
the forest with the current ray. Clearly, the simplest thing to do is to wait for the other processor to reply.
Unfortunately, this also leads to a huge amount of wasted processor time. Continuing the traversal of the
tree is undesirable because if the remote request returns with information about a new hit, that information
can be used to great advantage in the subsequent traversal of the rest of the tree. Traversing the tree
without that information may entail significantly more work than the sequential algorithm. The best option
is to work on another pixel. A multi-tasking operating system resident on each processor allows one to
effectively begin processing another pixel, while retaining the simplicity (at least in the ray-tracing code)
of simply waiting for a reply. It also allows one to conveniently separate the processing of rays in the
forest from the processing of rays in sub-trees on behalf of other processors.

Once the remote processor has replied, we continue the traversal of the forest. Finally, the closest hit
has been found, and we shade the ray according to the usual prescription for ray-tracing. The shading algo-
rithm, of course, may require the analysis of reflection, transmission or illumination rays. These rays are
treated exactly like pixel rays. They are tested against the forest in the processor in which they are created,
and requests are sent to other processors whenever needed. They are eventually shaded in the processor
that created them,
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Thus, we have an overall implementation in which pixels are decomposed according 1o either the
tiled or scattered decomposition. All rays associated with a given pixel traverse the forest in the processar
responsible for that pixel. Furthermore, all shading calculations for these rays are done in that Processor.
When a ray leaves the forest, a message is sent to the processor controlling the appropriate sub-tree. The
ray then traverses that sub-tree in the remote processor, and a reply is returned to the originating processor,
indicating whether an intersection was detected and if so, the relevant photometric parameters of that inter-
section,

To avoid unnecessary idle lime, but retain simplicity in the code, it is important that several pixel
evaluation processes be active simultaneously on each processor. Mulii-tasking is not strictly necessary;
multiple active pixels could be managed by the ray-tracing code itself, but interest in irregular problems
was growing at Caltech just as the need for some form of multi-tasking in the ray-tracer became clear, so
we decided to pursue a multi-tasking approach. With multiple active processes on a processor, when pro-
cess o on processor A waits for a reply from process § on processor B, processor A will not become idle
because another process (y) will be available to continue work on another pixel. We found that three to six
pixel processes per processor are sufficient to make idle time unimportant.

The operating systems available on hypercubes, both commercially and internally at Caltech, did not
provide the support we needed to allow multi-tasking of this type. Consequently, part of our task in
developing the ray tracer involved operating system development not directly related to computer graphics.
To a large extent, the experimental MOOSE operating system for the Mark II, NCURBE and Intel hyper-
cubes was motivated by the needs of the ray tracer. The MOOSE operating system has powerful run-time
multi-tasking facilities, and will provide a framework for futare developments in dynamic load manage-
ment on hypercubes and solution of irregular problems. MOOSE is described in detail in two other papers
in this proceedings 19.20

We also made extensive use of the CUBIX 1/O system,2!:22 which allowed us to write a program
that is portable not only among different brands of hypercubes but also among several sequential machines,
including VAX, Sun, Elxsi and the Apple Macintosh II. The version of the code suitable for small
geometric models (ie. it does not distribute the database) can be recompiled without modification on
sequential as well as parallel machines. The high quality editors, debuggers, profilers and other tools on
the sequential machines were a great help in debugging and optimizing the code in the initial stages.

3.1 Dynamic load halancing revisited

In the parallel scenario so far, both the model and the image have been statically decomposed onto
the parallel processor. A dynamic decomposition of the image offers the possibility of improved load bal-
ance. Since both pixel tasks and hit tasks are competing for the same CPU resource on each node, we can
try to keep the entire machine busy by dynamically balancing only one of the two types. The pixel tasks
are the obvious candidate. The simplest thing to do is to allocate blocks of pixels on demand to processors
which are idle. This can be done by maintaining a single global list of unfinished pixels. Since a block of
pixels can be describe succinctly with only a few words of data, the communication overhead necessary to
obtain a block of unfinished pixels is not too large. Once a block of pixels is complete, it can be written
directly to the frame buffer, or to a mass storage device.

4, Results

Load balancing results for small models have already been reported in Table 1. For such models,
load imbalance constitutes essentially all of the inefficiency of the algorithm. We discount the time to load
the model and dump the completed image for two reasons: it is highly dependent on hardware, which is
rapidly improving at the moment (parallel /O systems), and we did not make any effort to optimize the
parallel loading of the database. Black and white reproductions of the color images at 512x512 resolution
appear in Figure 2. The three models, "hypercube”, "room” and "solids” were rendered with nine primary
rays per pixel for anti-aliasing on a 256 processor NCUBE system in times: 423, 675 and 219 seconds,
respectively.

We used two large models placed in the public domain by Eric Haines3 1o assess the efficiency of
the system when the database is distributed. The model called "balls" is a recursive structure of a large
sphere surrounded by 9 smaller spheres, each surrounded by 9 smaller spheres, etc. "Mountain" is a fractal
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mountain with four crystal balls suspended above it. Statistics about the models can be found in Table 2.

Timing results from running the raytracer on an NCUBE system appear in Table 4.

per processor Number of processors
model name data size 16 3 64 128 Sun 3/160
balls 120kb 145(5%) | 144(5%) | 143(14%) | 144(39%) 55
mountain 200kb 232(7%) | 230(6%) | 231(13%) | 232(37%) 83
Tavg Npmc

Times are in msec per pixel per processor, i.e. N
»
Numbers in ( ) are the observed load imbalance.

Table 4. Timing results for models with a distributed database.

The times in Table 4 are already scaled to the number of processors, and should be compared
directly across a row. The number of pixels per processor, n, is either 1024 or 2048 for each of these
images. The fact that the per-pixel performance remains almost exactly constant across each row means
that communication and other forms of overhead depend primarily on the number of pixels per processor,
and only weakly on the number of processors. Substantial load imbalance occurs when there are many
processors because some processors are assigned only one sub-tree, but that sub-tree accounts for more
than one processor’s share of the total work. The large values of the load imbalance suggest that it may be
necessary to dynamically allocate pixels to processors on demand. Then, those processors that have more
than their share of sub-tree evaluations will simply compute fewer pixels. An alternative to dynamic load
balancing is to assign particularly time-consuming sub-trees to more than one processor, so that the pro-
cessing of requests directed toward that sub-tree is distributed.

It is difficult to accurately measure the efficiency of the parallel program for large models because,
by definition, the image cannot be rendered on a single processor. For purposes of comparison, in additicn
to hypercube running times, we report the time to render the images on a Sun 3/160, with floating point
accelerator. When rendering small models, each processor of our NCUBE system operates at approxi-
mately 30-45% the speed of the Sun.

A black and white reproduction of the "hcube” image appears in Figure 4. It represents a six-
dimensional hypercube as a three-dimensional cube with a three-dimensional cube at each corner. The
image was originally rendered at 24-bits RGB resolution.
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