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ABSTRACT

A theoretical basis for the scattered decomposition is worked out in some detail. The basic
result has been part of the "folklore” for some time, but has never been proved. The load
imbalance expected from a scattered decomposition of a set of computational tasks is propor-
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, where n is the number of tasks assigned to each processor, m,,,, is the mean

time per task and g, is the root mean square deviation time per task. The constant of pro-
portionality is of O(1), and is a very slowly increasing function of the number of processors.

The scattered decomposition is part of the
standard "toolkit" of the parallel programmer
|Fox 88]. When confronted with an irregular
problem, or one in which correlations exist which
would cause a regular decomposition to suffer
from load imbalance, the scattered decomposition
often provides a solution. In essence, the scat-
tered decomposition takes the computational
tasks, and distributes them over the machine
without regard to their proximity in some under-
lying space. The goal is to destroy any correla-
tions that might exist between tasks that are
assigned to an individual processor. The question
addressed here is just how well does this pro-
cedure work?

Consider the example of generating a com-
puter graphics image by ray-tracing [Goldsmith
88]. A tiled decomposition of an image would
assign rectangular blocks of pixels to individual
processors. This decomposition can lead to
significant load imbalance because pixels (and
hence blocks of pixels) near the periphery of the
image will often be much easier to compute than
their counterparts near the center of the image.
With a scattered decomposition, each processor is
assigned pixels from all parts of the image, and
this source of load imbalance is eliminated.
Nevertheless, without prior knowledge of exactly
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which pixels are the most time consuming, the
scattered decomposition still suffers from some
statistical load imbalance. The magnitude of this
residual load imbalance is estimated below.

First, define the load imbalance as
t
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where m,,. is the mean time for a processor to
complete its tasks, and consider the load imbal-
ance one can expect from an ensemble of N,
such processors. Let the time for each processor
to finish be a random variable with distribution
P,,.. and assume that the processors are indepen-
dent. Under these conditions, / is also a random
variable. It's distribution, denoted by P, is
obtained by noting that for the load imbalance to
be less than /, each of N, independent proces-
sors must finish in time less than (/+1)m,,,,,. . Thus
P it (i1bal < 1) = [Py (i < (141,00 )
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The approximation is good as long as the result is
small.

Now suppose that the time taken by each
processor is the sum of n sub-tasks, and that the
time to complete each sub-task is also a random
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variable with distribution P, (t). The essential
feature of the scattered decomposition is to make
the sub-tasks assigned to a given processor
independent, so that lengthy tasks are not
assigned disproportionately (o a single processor.
If n is large and the distribution P, has finite
variance, then the Central Limit Theorem
[Lindgren] states that the distribution P, ,.(7)
approaches a Normal Distribution, regardless of
the details of P, (7).
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and erf (x ) and erfe(x) are the error function and
the complimentary error function, respectively.
When the complimentary error function is small,
its value may be approximated by [Abramowitz]:

erfec(x)= +:1‘,=exp(—x2)
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We are now in a position to estimate
Pt (imbal >1) in terms of m,,, and G, . Sim-
ple manipulation of the above expressions reveals
that:
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The load imbalance /. comresponding toa a
confidence of ¢ is defined to be the value of load
imbalance which is exceeded with probability
I—¢. That is:

l—c =P, (imbal > 1.}

Another simple calculation reveals that
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The constant of proportionality is an ex-
tremely slowly growing function of Np,,.. In the
rather extreme case of N, =1000 and a
confidence of 99%, we still have:
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