c3p-s586

MOOSE: A Multi-Tasking Operating System for
Hypercubes

é
John Salmon’, Sean Callahan', Jon Flower'!, Adam Kolawa t

* California Institute of Technology, Pasadena CA 91126
+ Current Address: ParaSoft Cotp., 27415 Trabuce Circle, Mission Viejo, CA 92692

1. Introduction

The MOOSE project was begun at Caltech in Summer
1986. Its goal is to produce a powerful, {lexible multi-tasking
operating system suitable for research into load-balancing
and decomposition of irregular and dynamic problems.
Sec. 2 of this report describes the features of the MOOSE
system in some detail. In Sec. 3 we discuss where we expect
developments in MOOSE to take place, and in Sec. 4 we
review some of the lessons learned from the MOOSE project.

MOOSE offers some distinct advantages over other
operating systems available on Caltech’s hypercubes
(CrOS U1 [Fox 88|, Time Warp [Jefferson 85,88], and the
commercial systems from Intel and NCUBE). It is especially
attractive as a vehicle for load balancing, because it allows
for run-time mult-tasking. It is possible to write multi-
tasking programs for the Intel iPSC but the structure of tasks
must be specified at compile time, and cannot be changed
during the course of the program. Unlike Time Warp,
MOOSE does not promote a specific programming model.
The MOOSE programmer is left to explore different pro-
gramming models that might suit his problem. One could
even implement the Time Warp model on top of MOOSE.
MOOSE is more akin to the Time Warp 'Machine Interface’
than the entire Time Warp system.

MOOSE is operational on our Mark IT hypercubes, our
NCUBE systems and our Intel iPSC. The features are essen-
tially the same on each, except that the real-time clock facili-
ties are not implemented on the NCUBE.

2. System Overview.

MOOSE consists of several distinct but overlapping
sub-systems. The tasking sub-system deals with the creation,
destruction and scheduling of tasks. The comununication
sub-system allows tasks to communicate through pipes. The
synchronization sub-system allows the programmer to

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy ogherwise, or to republish, requires a fee and/or specfic
permission.

© ACM 1988 0-89791-273-X/88/0007/0391 $1.50

391

synchronize tasks using semaphores. An I/Q subsystem
based on the CUBIX model [Salmon 87] allows programs to
transparently access the host's operating system. lIn the fol-
lowing sections, we treat each of these sub-systems in tum,

2.1 Tasks

Currently, MOOSE loads the entire executable module,
consisting of user code and data, as well as operating system
code and data, into each processor of the hypercube. This
strategy is dictated by the boot-loaders already present on the
hypercubes to which we have ported MOOSE, which we
elected not to replace or override. Thus, all processors have
access to all code, as well as a single private copy of all data
declared with C storage class extern .

As far as the programmer is concemned, execution begins
with the function main, in processor 0 only. In order to start
the other processors doing useful work the main task must
create tasks on those processors, using the task system call
which will be discussed shortly.

A task is a thread of control, with its own instruction
pointer and its own stack, or qutomaric data. Within a task
instructions are executed in the usual order, but there may be
long delays between the execution of one instruction and the
next, since the scheduler may decide to execute another task
for a while. This type of behavior is familiar to (although
conveniently overlooked by) progranuners used to operating
systems like UNIX and VMS. When a UNIX process is
begun, it appears to the programmer that instructions are exe-
cuted in a well-defined sequence, without interruption. In
fact, many processes may be sharing the CPU, and long
delays may interrupt any given process when those other
processes gain control of the CPU. Although the underlying
CPU is executing many separate processes, and maintaining
many independent threads of control, the programming
model apparent to the user is that of a unique thread of con-
trol winding its way through his program.

MOOSE’s primary goal is to support multi-tasking on a
parallel computer. In order to achieve that goal, a mechanism
must be created which allows for the creation of new tasks.
The system call task serves this purpose.

#include <task.h>
#include <pipes.h>

void task(int (*funcptr)(), int processor, int stacksize,
im priority, PDES inpipe, PDES outpipe);

Example 1.The task system call.

The first argument, funcpr | is a pointer to a function,
and causes the new task to begin executing at that address.
Since all the code is present and identical on all processors,
such pointers are unambiguous, and may be dereferenced
independently of processor. The next argument, processor,
allows the programmer to specify on which processor the task
should min. The stacksize argument instructs the system to
allocate a fixed stack of the specified size, to hold the local
data used by the new task. It is an error for the stack to grow
beyond this point. The priority is used by the scheduler to
determine the order of task execution. The last two argu-
ments are the task’s input and output pipes, respectively.
These provide the task’s primary connection with its parent
and siblings. Pipes will be discussed in Section 2.4.

Unlike processes in UNIX, MOOSE tasks can commun-
icate through shared memory, if they are execuring on the
same processor. This feature is a source of great conveni-
ence, as well as considerable headache. As mentioned above,
all tasks on the same processor share code and external data.
Memory declared with storage class extersn, and that obtained
from the system call malioc is sharable by all tasks running
on the same processor. Although the memory allocated by
malloc is sharable, only the task that called malloc will
"know" where that memory is, unless the value returmed by
malloc is placed in a shared external variable. Since external
identifiers refer to the same data in different contexts, one
should take great care in using them as loop counters, etc. A
set of semaphore primitives is provided (see Section 2.3), to
assist in synchronization of access to such shared data.

The currently running task is always available under the
pointer thistask , which is declared in the include file task.it.
It is useful, because the current task’s input and output pipes
are confained in the inpipe and ourpipe fields of thistask , as
in Example 2.

#include <task.h>

i:-i.rcad(lhistask->inpipe,)
pwrite(thistask->outpipe, ...},

Example 2.Use of the thistask structure.

2.2. Scheduling and the Real-Time Clock

Each task has a programmer selected priority, which is
assigned when the task is created, and which is used by the
scheduler to decide which task to run. The scheduler
attempts to ensure that the highest priority runnable task is
always running. 1f there is more than one runnable task with
the highest priority, then those tasks execute in a rouncd-robin

order, each getting the CPU for one rick, or about 100msec.
The MOOSE scheduler is pre-emptive on the Mark [f and
Intel systems. That is, if a high priority task becomes runn-
able through some asynchronous event like a timer interrupt
or receipt of a message, it immediately gains control of the
CPU. On the NCUBE, we have not implemented pre-
emption, and the running task will retain control of the CPU
until it makes a system call.

One way for a task to enter a state other than runnable,
is to execute the sfeep system call.

void sleep(int nticks);

Example 3.The sleep system call.

The argument, aticks , specifies a number of ticks of the real-
time clock that should elapse before the task becomes runn-
able again.

2.4 Semaphores

A semaphore is a data structure, which may be accessed
only through the primitives displayed in Example 4.

The header file <sem.ht> defines the type SDES, or
semaphore descriptor. A semaphore descriptor identifies a
unique semaphote which resides on a particular processor
somewhere in the system. The function screare returns a
new semaphore with the specified initial value. The sema-
phore resides on the named processor but the semaphore may
be used by tasks on other processors. A semaphore descrip-
tor, like the pipe descriptors described in Section 2.4,

#include <sem.h>

extern SDES NULLSEM;

SDES screate(int processor, int initial_val);
sdelete(SDES sd);

int ISNULL(SDES sd);

swait(SDES sd);

ssignal(SDES sd);

ssignaln(SDES sd, int ntimes);
sreset(SDES sd, int new_value);

int scount(SDES sd);

Example 4.Semaphore primitives.
contains information which allows the semaphore primitive
routines to uniquely locate the semaphore’s internal state
variables, regardless of processor, A semaphore descriptor is
not a pointer, and hence its value is valid on any processor.
A semaplore descriptor may be placed in a pipe, and then
used by a task on another processor. The function sdelere
removes the named semaphore, signaling all tasks that may
have been waiting for it. It is an error to refer to a semaphore
that has been deleted. The special semaphore descriptor,
NULLSEM, never refers to a valid descriptor, and the macro
ISNULL, may be used to compare any descriptor with

NULLSEM. If a non-fatal error is encountered in screate,
NULLSEM is returned.

The complementary functions swait and ssignal consti-
tute the primary interface to semaphores. Each semaphore
contains a hidden integer variable called s, for the purpose of
discussion, and a list of waiting tasks. When swair is called
on a semaphore, the count, s, is decremented by one and if it
becomes negative the task that executed swait enters the waiz-
ing state, and is placed on the list of tasks associated with the
semaphore. The complimentary function ssignal increments
the hidden variable s and if 5 remains negative or zero, the
highest priority task in the list waiting waiting tasks is made
runnable. Thus, several tasks can be waiting for the same
semapliore, and they are made runnable one at a time by exe-
cution of ssignal.

The ather primitives are simple variations on the theme
of swait, ssignal, screate and sdelete. The function signain
atomically calls ssignal a number of times. The function
sreset awakens all tasks sleeping on the named semaphore
and then resets the semaphore's counter to new value, and
scount returns the value of the named semaphore’s counter.
This value is "current” at the time that scounr returns, but it
may have changed before the calling program has a chance to
examine the value. It should be used for advisory purposes
only. Basing a synchronization algorithm on the value
retumed by scount is almost certainly an error.

The power of semaphores is demonstrated by the code
fragment in Example 5. which enforces mutual-exclusion
between execution of critical sections of code, ie. even if
many tasks are simultaneously executing the subroutine

containing this code fragment, only one task can be executing
instructions inside the critical section at any one time. Thus,
it is safe to touch shared data structures within the critical
section, without fear of interference.

#include <sem.h>
extern SDES sd;

sd = screate(proc, 1); /* executed only once */
swait{sd);

/* CRITICAL SECTION */

ssignal(sd);

Semaphores were introduced in [Dijkstra 1968]. An
illuminating discussion appears in [Ben-Ari 1982} The
semaphores used in MOOSE are similar to those in the Xinu
operating system [Comer 1984].

2.4 Communication and pipes.

MOOSE tasks executing on the same processor may
communicate through shared memory. MOOSE also pro-
vides a more general communication mechanism via pipes,
so that any two tasks can communicate regardless of whether
they share the same processor or not. This is desirable
because it allows for a unifonn coding style and often avoids
complicated synchronization algorithms involving seina-
phores.

323

A pipe is a depository for data in fixed length records.
The records in the depository are read and written in FIFOQ
order. The depository resides on a particular processor, even
though tasks on any processor may refer to the pipe. The sys-
tem calls that refer to pipes are shown in Example 6.

#include <pipes.l>

PDES pipopen(int processor,
int record_length, int nrecords);

int pwrite(PDES pd, void *dataptr, int nbytes);
int pread(PDES pd, void *dataptr, int nbytes),
void pclose(PDES pd),

Example 6.Pipe primitives.

A pipe is created by the system call, pipopen, with a
depository on the named processor. All subsequent refer-
ence to the pipe is through the pipe-descriptor (PDES)
retumed by pipopen . It is important to reatize that a PDES is
a structure that contains enough information to uniquely iden-
tify any pipe in the system. A PDES is not a pointer. In con-
trast to a pointer, its value is independent of the processor on
which it is used. The records that will be exchanged through
the pipe must be of size record length or smaller, and there
may be no more than nrecords unread records sitting in the
pipe at any one time.

The system call pwrite copies nbytes of data beginning
at the pointer, prr, to the first free record in the pipe identified
by pd. A shortcoming of the current implementation is that
pwrite will fail if the pipe is full, or if the value of nbyres
exceeds the record length of the named pipe.

The system call pread copies nbyvtes from the first
record in the pipe into the space under the pointer, prr, and
deletes the record. It is up to the user to guarantee thar this
record contains nbytes of valid data. 1f the record was placed
in the pipe by a call to pwrite with nbytes less than that in
the call to pread , then only the initial bytes are valid. If there
are no records in the pipe at the time pread is called, then the
calling task enters the waiting state. It is awakened when a
record is written into the pipe by some other task. Intemally,
the pipe system uses a semaphore protocol to control waiting.
In the interest of speed, when a preud is pending on a pipe,
the corresponding call to purire deposits the data directly into
its final destination, avoiding the unnecessary copy into and
out from the pipe’s central depository.

The system call pclose deletes a pipe from the system.
Any attempt to access the pipe after a call to pclose is an
€rror.

2.5 I/0O and Asynchrunous CUBIX.

MOOSE tasks communicate with the outside world with
an asynchronous version of CUBIX. CUBIX is a runtime
library of routines for the processors, and a universal program
that runs on the host which makes most of the host operating
system transparently available to the MOOSE program [Sal-
mon 1986]. In contrast to loosely synchronous CUBIX, asyn-
chronous CUBIX imposes absolutely no requirements of syn-
chronization or argument agreement. Each processor’s

interaction with the host is logically separate from all others.
If used naively, this feature can lead to considerable over-
head, e.g. when all processors are reading identical data from
a file. If the system call read or the standard 1/O call fiead is
made by each processor, then the data will be read by the
host, and transmitted from the host to processor (0 once for
each processor in the cube. Of course, nothing prevents the
programmer from noting this fact and calling read only once
in processor 0, and then distributing the data to the rest of the
cube using a fast tree-based or ring-based algorithm.

The complete independence of the individual proces-
sors, coupled with the fact that thesre is really only one host
process to multiplex all their access to the UNIX system leads
to some difficulties. A single UNIX process can have, at
most, 20 open files. Thus, processors may not open separate
files for their input or output. All together, the processors
may have files opened with at most 20 distinct names. The
code fragment in Example 7. simply will not work on a sys-
tem with more than 20 processors. (Note that each processor
is trying to open a different file.)

char s[20];
sprintf(s, "wont_work%d", procnium);
fp = fopen(s, "w"),

Example 7.An improper use of CUBIX.

All processors wishing to do I/O should open the same file, or
one processor (processor (}, say) should be designated as the
1/O controller and all 1/O should be funnelled through it.

Asynchronous CUBIX manages the case in which
several processors open a single file by maintaining a record
of eacl processor’s position in the file. Thus, each call to
read or write is accompanied by a call to /seek which is hid-
den from the programumer.

During output, all processors will be writing to the same
file (or files), but each one has a unigue pointer into the file.
The user must arrange to keep them from interfering with one
another. Two slightly obscure features of the UNIX file sys-
tem deserve comment because they are extremely useful in
this regard. The first is that "holes’ in a file do not consume
disk space. Thus, a file created as follows:

fp = fopen("striped”, "w");
fseek(fp, procnum* 1 00000L, 0);
fprintf(fp, "hello world from processor %ed\n”, procnumy);

Example 8.The use of striped files.

will use approximately one tisk block per processor, even
though its length is 100kbytes times the number of proces-
sors. This trick is useful for keeping the output of different
processors well separated. Unfortunately, it does not work in
NCUBE's AXIS operating system.

Another feature of the UNIX file system is the
O_APPEND file mode. When a file is open for output with
the O_APPEND flag bit on, all writing is done at the end of
the file, regardiess of the position of the file pointer.

2.6 Debugging tools.

We took a rather ad hoc approach to the debugging of
MOQOSE, i.e. we developed tools as we needed them. These
tools are available to the application programmer. Addition-
ally, since we can hardly expect that MOOSE is bug free, we
have left debugging cede in the system which can be
activated at run time. This detracts from the speed and
elegance of the system, but it is necessary at this early stage
of development.

Debugging loosely synchronous CUBIX programs is
generally accomplished by inserting print statements into the
code until the bug is sufficiently localized that it can be found
by inspecting the code. While hardly an advanced debugging
technique, it is generally adequate. Unfortunately, this
method has the serious drawback that it relies on the com-
munication system and I/O system 1o be operational in order
to be of any value. If either of these systems has failed, the
programmer gets no information. Since the systems we have
been using (except the iPSC) do not have memeory protection,
MOOSE cannot protect itself, and hence its conmunication
and 1/O sub-systems are susceptible to accidental disruption
by the application program.

We have partially avoided the reliance on working sub-
systems by introducing the concept of a RAM stream. A
RAM stream is used the same as any other standard I/0
stream (i.e. FILE pointer) except that data written to it is
never flushed. Instead, the data remains in the memory of the
processors, and can be retrieved, even after complete collapse
of the operating system, by utility programs run from the
host. The standard I/O stream, srdsys, is automatically
opened as a RAM stream. By default, slightly less than 32k
bytes of memory are reserved for stdsys. It is not fool-proof,
but it is extremely useful.

When MOOSE itself detects an error, or if the applica-
tion program calls the function error, an extensive set of
diagnostics including stack backtraces is written into stdsys.
This information can then be obtained with utilities run from
the host that retrieve srdsys.

2.7. Performance.

Speed was of paramount importance in the design of
MOOSE, but not in its implementation. Thus, we con-
sistently asked the question: "Can it be done quickly?", when
considering a new feature or algorithm. On the other hand,
we rarely had the timne or patience to actually do it 'quickly’,
analyzing code for 'hot spots’, coding in assembly language,
etc. In fact, MOOSE still contains numerous expensive calls
to debugging routines, which slow it down but which will
help us to track down the remaining bugs. Nevertheless, one
is still interested in just how fast or slow it is. The following
figures are for our NCUBE implementation. We believe they
could be improved by a factor of three or more with careful
optimization.

The time to communicate messages between adjacent
processors when neither processor undergoes a context switch
is approximately 500pusec + (message length)3psec/byte.

The time to context switch, using semaphores, is
approximately 1-2 msec.

3. The Future

MOOSE is believed to "work” in in its current state.
However, several important extensions are impossible
without more sophisticated hardware. The kinds of develop-
ments which we envision are described in the following sec-
tions. In almost all these cases, the existence of memory
management hardware is almost essential for the work to
proceed in a meaningful way. In principle, one can do many
of these tasks without hardware support, but the software
expense, would be exorbitant, and would prevent one from
learning the correct lessons from the exercise. The following
sections outline the various directions in which research on
MOOSE can continue. Since they are predictive rather than
reflective, they are necessarily sketchy. Much of this work is
being carried on by Jeff Koller and the interested reader is
referred to his paper in this proceedings [Koller 88].

3.1. Memory Management, and Protection.

The MOOSE system calls and their associated data
structures should be protected from accidental corruption by
the user program. This is absolutely essential for a robust
system, and it would be extremely helpful for program
development as well. Currently, a simple error in the appli-
cation program can destroy the code and data of the operating
system. Such errors, when they are detected at all, often
appear as internal MOOSE errors, suggesting a bug in the
operating system, instead of a bug in the application program.
Debugging would be vastly simpler if the hardware detected
illegal references, and inunediately aborted the application
program with an informative message. Jeff Koller, [Koller

B8], has ported MOOSE to the Intel iPSC, making use of the
memory management features of the Intel 80286 processor.
That work is presented elsewhere in this proceedings.

3.2, Teams.

MOOSE's strategy of sharing all code and data between
all processes executing on a processor is born of expedience
rather than design. Given memory management hardware
capable of translating virtval addresses into absolute
addresses, it becomes possible to protect tasks from one
another, In such an environment, the programmer can decide
that certain tasks will share code and data, which will be dis-
tinct from the code and data of other tasks on the same pro-
cessor. Such a collection is termed a feam. Teams and tasks
are complimentary in that teams define a program’s use of
memory, and tasks define a program’s use of the CPU. With
this realization, it is clear that the tasks and teams are not
simply the beginning of an infinite hierarchy. With the
exception of global structures like global memory, and a file
system (see Section 3.4 below), there are no more resources
to be allocated and partitioned.

With the introduction of teams, the system call rask
loses some of its complexity. The rask system call will
create a task in the parent’s team. There is no need to specify
the processor on which the task will nim, and the specification
of input and output pipes may also become unnecessary. The
migration of teams from one processor to another may be
under programuner control or under the control of a load-
balancer.

395

3.3. Relocation and Load Balancing.

Since reams will be completely self-contained, with
their own code and data, they may be moved from processor
to processor. Thus, strategies for automatic load balancing
can be studied after the implementation of teams. This is a
very large and exciting area, deserving of more than a single
paragraph.

3.4. Global memory and leagues,

The ability to share small control structures, such as
array sizes, timesteps, filenames, etc., would make program-
ming considerably easier. A global dictionary is an appropri-
ate mechanism for sharing such data. Since this dictionary
constitutes another system resource, logically independent of,
and larger than teams and rtasks, it suggests the need for
another level of the teamn/ftask hierarchy. We provisionally
call objects at this level leagues , since they are primarily col-
lections of teams. Another appropriate name is program,
since objects at this level are really complete and self-
contained entities solving a single problem.

3.5. Object-oriented programming

Initially, we intended MOOSE to incorporate object-
oriented concepts at all levels. We hoped to use the C++ pro-
gramming language for the implementation, and use the work
of [Stroustrup, 84] as a starting point for multi-threaded pro-
gramuning. Unfortunately, deficiencies in certain compilers
prevented us from realizing this idea. Since the available
compilers have improved somewhat with time, we are in a
position to reconsider this important idea. Incorporating an
object-oriented methodology into MOOSE would assist pro-
grammers in writing portable, reliable and understandable
code. Constructs such as teams and tasks are ideal candidates
for "objects” in such a system.

3.6. Miscellaneous

Our experience during both system development and
application development has suggested that the programmer
interface could be profitably redesigned. Semaphores, while
provably sufficient for all synchronization tasks, are some-
times quite difficult to use. More structured objects, like
monitors would provide the programmer with a more power-
ful system.

Pipes would be more efficient (and more deserving of
the name) if they had buffers at both ends, rather than a single
buffer. Such a change would require a major overhaul of the
semantics as well as the code.

We have found that temporary pipes, which are used
once and thrown away are very comunon both intemally to
MOOSE, and in application programs. Special system calls
to support this type of pipe would simplify coding, and could
lead to a significant performance increase.

4, Lessons

Using MOOSE has taught us some important lessons
about parallel asynchronous programming. In retrospect,
perhaps, these are things we should have realized at the
outset. The most significant is that asynchronous parallel
programming can be vastly more complex than synchronous

parallel programming. The difficulties arise because one's
implicit assumptions about the behavior of a program may be
incorrect. A multi-threaded program does not execute its
instructions in an order readily determined from the structure
of the code. Critical sections are not hard to implement, the
hard part is realizing that they are needed. When a bug does
appear, it is often non—repeatable and timing—dependent, and
it can evade the standard "print-it-and-see” debugging tech-
niques. Asynchronous programming desperately needs a set
of rules of thumb, akin to those introduced twenty years ago
for "structured programming.”

One useful rule is to avoid unnecessary task creation.
Don’t get carried away with using tasks when a simple func-
tion call will do. Another is to put the communication and
synchronization structures in place at the very beginning of a
program, right at the beginning of main, and before tasks start
creating and destroying one another. Finally, aveid the use of
shared memory, except for "almost-constant” data that is
written once at the beginning of the program.

These suggestions are clearly not the last word on struc-
tured asynchronous programming. Extensive application
development needs to be undertaken, and lessons must be
drawn from from a much larger body of experience.
Nevertheless, abiding by the rules above is clearly an aid to
writing understandable, bug-free code.

5. Acknowledgments

This work was supported in part by Department of
Energy Grant No. DE-FG03-85ER25009, the Program
Manager of the Joint Tactical Fusion Office and the ESD

division of the USAF as well as grants from IBM and SAN-
DIA. In addition, J.S. was partially supported by a Shell
Foundation Fellowship.

396

6. References

Pijkstra, E.W., Co-aperating Sequential Processes,
in Programming Languages, F. Genuys Eql.,
Academic Press, New York, 1968, pp. 43-112.

Ben-Ari, M. Principles of Concurrent Programming,
Prentice-Hall International, Englewood Cliffs N.J., 1982.
Comer, D., Operating Systent Design: The Xinu Approach,
Prentice-Hall, Englewood Cliffs N.J., 1984.

Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J.,
Walker, D., Solving Problems on Concurrent Processors,
Prentice-Hall, Englewood Cliffs N.J., [988.

Jefferson, D, Sowizral, H., SCG Conference on
Distributed Simulation, San Diego, 1985

Jefferson, D., The Time Warp Operating System,
Proceedings of the Third Conference on Hypercube
Computers and Applications, ed. G.C. Fox,

SIAM, Philadelphia, 1988

Koller, I, A Dynamic Load Balancer on the Intel
Hypercube, Proceedings of the Third Conference

on Hypercube Computers and Applications, ed. G.C. Fox,
SIAM, Philadelphia, 1988

Salmon, J o CUBIX: Programming Hypercubes Without
Programming Hosts, in Hypercube Multi-Processors
1987, ed. M.T. Heath, p. 3, SIAM, Philadelphia, 1987.

Stroustrup, B., A Set of C++ Classes for
Ca-routine Style Programming, AT&T Bell
Laboratories Computer Science Technical Report,
AT&T, Murray Hill NJ, 1984

