Parallel N log N N-body Algorithms and Applications to Astrophysics

John Salmon*
California Institute of Technology
Mail Code 206-49, Pasadena, CA 91125, USA

December 8, 1990

Abstract: A parallel version of the Barnes-Hut N-body
algorithm is described. The algorithm first assembles a
tree data structure which represents the distribution of
bodies at all length-scales. A domain decomposition
is used to assign regions of space, and hence bodies,
to processors. An adaptive load balancing technique
is used to insure that processors are assigned equal
amounts of work. A tree is built in each processor,
and after logy Nproc exchanges of data, each processor
has a restricted version of the tree which is sufficient for
force calculations on bodies which lie within its spatial
domain. We have obtained a speedup of over 380 on a
512 processor Ncube system. Overhead is primarily due
to redundant calculation and processor “waiting”, i.e.
time spent idle waiting for another processor to provide
necessary data.

1 The BH algorithm.

The general N-body problem may be stated as the fol-
lowing set of 6N (in three dimensions) ordinary differ-
ential equations:

& _
@ =Y M
dv; =~

mg = LT @

In astrophysical simulations, the force term, F;j is New-
tonian gravity:

5 _ GmimsFy
Fij = P
rijl

The gravitational force is “long-range”, meaning that
there is no cutoff, beyond which the force may be con-
sidered negligible. In principle, it is necessary to eval-
uate the entire sum on the right-hand side of Eqn. 2
at each timestep of the time integration. Naively, this
requires O(N?) operations on each timestep.

3)

*This work was supported by the U.S. Department of Energy:
Applied Mathematical Sciences (Grant DE-FG03-85ER25000);
Program Manager of the Joint Tactical Fusion Program Office;
U.S. National Science Foundation: Center for Research on Paral-
lel Computation (Grant CCR-8809615). ‘

CH2961-1/91/0000/0073$01.00 © 1991 IEEE

Figure 1: A collection of bodies may be approximated
by a point mass located at the center of mass.

The Barnes-Hut (BH) [1] algorithm is one of a num-
ber of algorithms [1-5] which use a multipole expansion
and a hierarchical data structure to reduce the complex-
ity of computing long-range interactions like gravity.
The multipole expansion allows one to treat a collec-
tion of bodies as a point mass (perhaps with quadrupole
and higher moments) located at the center of mass. in
Figure 1, the force on point z; may be evaluated ap-
proximately as:

F-‘.- _ E Gmym;T;; o~ GmiyM Rem)

; Irl'j [3 |Rcm IS

The quality of the approximation in Eqn. 4 is a de-
creasing function of the ratio: b/|R.m|, where b is the
radius of the collection of bodies.

In the BH algorithm, multipole moments are com-
puted for cubical cells an octree of variable depth. The
tree is constructed abd inilio on each timestep with the
following properties:

1. The root cell encloses all of the bodies.

2. No terminal cell contains more than m bodies.

3. Any cell with m or fewer bodies is a terminal cell.
A typical two-dimensional BH tree with m = 1 is shown
in Figure 2.

To compute the force on a body, one traverses the
tree starting at the root. Any time one encounters a

Figure 2: An m = 1 BH tree.

cell with a sufficiently small value of b/|Rcm|, one uses
the multipole approximation. Thus, distant cells, which
comprise many individual bodies, may be approximated
in unit time. The resulting algorithm, when applied to
all bodies, requires O(N log N) operations to evaluate
the forces on all N bodies.

2 Parallelization.

Developing a parallel implementation of the BII algo-
rithm proceeds in three steps:

1. Domain decomposition. Divide space into rectangu-
lar regions with one processor assigned to each region.
All bodies that lie within that region are the “respon-
sibility” of that processor.

2. Build a “locally essential” version of the BII tree in
each processor. This is a subset of the full tree which is
sufficient for all force calculations within the processor’s
restricted spatial domain.

3. Proceed with the force-evaluation algorithm exactly
as In the serial case, i.e. traverse the locally essential
tree once for each body.

2.1 Domain decomposition.

If a given multipole approximation is sufficient for a par-
ticular particle, then there is a very good chance that it
is sufficient for nearby particles as well. This fact sug-
gests that there is considerable advantage in processors
being responsible only for bodies in a restricted spatial
domain. If a processor is guaranteed to only compute
forces within a restricted domain, then it only needs to
build and record a limited subset of the entire BH tree.
A good domain decomposition will divide the total work
load equally amongst the processors, and minimize (or

74

o100 1110 110
0110 i3 1101
1011
0101 1001
0111
1 1010
0011 —
0010

Figure 3: Orthogonal recursive bisection of space, with
processor numbers assigned.

at least maintain an acceptably small level of) commu-
nication.

Assigning spatial domains to processors is accom-
plished by orthogonal recursive bisection [6]. Both
space and the set of processors are divided into halves,
and each half of the spatial domain is assigned to one
half of the processors. The bisection of space is per-
formed on alternating cartesian directions, until exactly
one processor is assigned to one region of space. A typ-
ical decomposition resulting from orthogonal recursive
bisection is shown in Figure 3. Note that the “tree-like”
structure shown in Figure 3 is logically distinct from the
BH tree.

In order to achieve a well balanced load, the domain
decomposer must be able to estimate the partition of
work that results from a partition of space. Astrophysi-
cal N-body simulations are usually highly irregular, con-
sisting of one or more galaxies with very dense cores
and diffuse haloes. The spatial distribution of bodies is
highly non-uniform. In addition, because of the large
range of densities, the depth of the BH tree is highly
non-uniform also, which means individual particles con-
tribute different amounts of work to the total load. Nev-
ertheless, the numerical stability of the time-integrator
requires that the time-step be sufficiently small that the
local density of particles cannot change very much from
one time-step to the next. Thus, the work required to
update a particular particle cannot change significantly
from one time-step to the next, although it may be very
different from one particle to the next. This allows us to
estimate the work associated with a given domain sim-
ply by estimating the time (measured either by counting
interactions or by reading the on-board clock) required
to update each of the particles in that domain, on the
last time-step. The coordinate of each split in the or-

thogonal recursive bisection is determined by iteratively
seeking a solution to

= 0
ws (2) — we(z)
ws(z) + we(z)

where w¢(z) and ws (z) are the work associated with
particles with coordinate less than z and greater than z,
respectively, estimated from the last time-step. The it-
erative root finder need not converge to very high accu-
racy. Since the estimated work is only accurate within
a few percent, it is a waste of time to seek a solution of
Eqn. 5 which is accurate to better than a few percent.

Additional load imbalance arises because choice of
splitting coordinates based on Eqn. 5 only balances the
load that can readily be assigned on a per-particle ba-
sis. The computation associated with building the BH
tree is not accounted for by Eqn. 5. One possibility
is to develop an empirical model of the tree-building
time as a function of the number density of bodies, etc,
and to use this model in place of w¢(z) and wy(z). A
much better approach is to rely on the fact that what-
ever the exact relationship between the total work and
the per-particle work, it must satisfy the following two
properties:

(8)
(6)

W(zsplit)
W(z)

1. It is monotonic in the per-particle work.
2. It does not change significantly from one time-step
to the next.

Then we can seek a split point, ,p;;; Which is not ex-
actly the median of the per-particle work distribution:

W(xaplil) Dnew (7)
Prew Poid — Lola *w (8)

_ By(z) —0(2)
0< w <1 (10)

where 15 (z) and W¢(z) are the measured total work
performed by processors assigned to the upper and
lower regions on the last time-step. I,4 is the actunal
load imbalance encountered on the last time-step. The
parameter w is arbitrary. We have found that w = 0.75
results in convergence to good load balance in two or
three time-steps, and prevents oscillations.

2.2 The locally essential tree.

The next step is to communicate information from pro-
cessor to processor so that each processor has sufficient
data to update the bodies in its domain. This tech-
nique is a generalization of that used in more regular
domain decompositions, in which a “guard layer” is ex-
changed between neighboring processors, e.g., in a fi-
nite difference calculation [7]. Here, the equivalent of

75

\41 distance
-‘—b
Processor
Domain
distance

%

Figure 4: Distance used in domain opening criterion
predicate.

the guard layer is a representation of the tree at succes-
sively coarser levels of detail as one moves away from
the processor’s boundary.

The natural communication topology imposed by or-
thogonal recursive bisection is that of a hypercube, with
each division of space corresponding to one of the di-
mensions of the hypercube. This hypercube topology
can be exploited to broadcast data at exactly the cor-
rect level of detail to all of the processors.

The procedure is as follows:

Build a BH tree from local particles
for (each bisection from DRB)
enqueue for transmission data which
may be necessary for any domain on
the other side of the bisection.
exchange enqueusd data with a processor
on other side of the bisector.
insert the received data into the
local BH tree.
endfor

It is easy to show by induction that after this pro-
cess is complete, each processor has exactly the data it
will need to compute the forces on any body within its
domain.

The algorithm described above requires that one
be able to answer the “domain opening criterion”
question— is a given cell’s multipole approximation suf-
ficiently good for any body in a given rectangular do-
main. This question is readily answered by comparing
the size of the cell to the distance shown in Figure 4.

We have found that a slight modification of the orig-
inal BH accuracy criterion has two beneficial effects [8]:

1. Eliminates a source of systematic error.

Machine nodes time(sec) N
MarkIIIfp 64 280 1.1 million
Ncubel 512 300 200,000
Neube2 512 80 1.1 million
Intel gamma(C) 64 290 1.1 million
" (asm, est.) 64 50-75 1.1 million

Table 1: Timing results for several parallel processors.

2. Reduces the number of overly conservative answers
to the domain opening criterion predicate.

2.3 Evaluate the forces.

Since each processor has a subset of the BH tree which
is sufficient for its own particles, there is no more need
for interprocessor communication. In fact, the original
serial code for force evaluation may be used completely
unchanged. The parallel algorithm will produce results
identical to the serial algorithm, except for a very small
amount of roundoff error which results from the non-
associativity of floating point operations.

3 Performance.

Our most extensive series of performance measurements
were carried out on the 512 processor Ncubel at Cal-
tech. Each processor of this machine has only 512kbytes
of memory, which barely allows us to explore the large
grain-size limit, and restricts the total number of bodies
we could simulate. The program is written with Cubix
[9] 50 there is no separate host program to interfere with
running on serial machines. Typically, analysis and de-
bugging of algorithmic changes was done on a serial
machine running UNIX. We have also run the program
on several other distributed memory parallel machines.
Some timings are shown in Table 1. The extensive series
of timings on the NCube are discussed in the following
sections.

3.1 Overhead.

It is common practice to report performances of parallel
machines in terms of speedup, S, or efficiency, «.

Tonaproc
S = Tw, .. (11)
S
= 12
€ Nproe ()

The overhead, f, which is algebraicly related to the
efficiency is somewhat more useful:

1 —1= TN,,.“ - T;'ntrinsic

€ Tintrinsic

(13)

76

Toneproc
Nproc

The overhead may be readily separated into compo-
nents which combine additively to give the total over-
head, i.e.,

J = fepiz + fwait + feomm + fimbat. (15)

The complexity overhead, f.pi-, arises from the ad-
ditional work required by the parallel implementation
over and above that required by a serial implementa-
tion. The waiting overhead arises from delays intro-
duced at synchronization points, i.e., blocking commu-
nication routines and explicit synchronizations. Com-
munication overhead, f.omm, arises from the time re-
quired to exchange data between processors. It is the
time spent in actual communication, after the synchro-
nization point has been passed. Finally, fimsq measures
the difference in speed between the slowest processor
and the average.

(14)

nmrlnric

3.2 Models.

The performance of the serial BH algorithm is known to
depend on the detailed distribution of points in space.
Thus, the parallel performance was measured with three
types of data.

1. A uniform sphere, shown in the figure connected by
dashed lines.

2. A Jaffe sphere, [10] which is highly concentrated near
the origin, shown in the figure connected by solid lines.

3. A snapshot of a merger simulation [11] shown in the
figures connected by dotted lines.

3.3 Data.

The speedup, S, and total overhead, f, are shown in
Figures 5 and 6. Overheads are plotted against the
grain-size,
N
16
Nproc’ ()

which demonstrates that the overhead decreases as
more bodies are added. Evidently, the speedup flat-
tens out as a function of Np,,. at some point for a fixed
number of bodies. Nevertheless, for large grain sizes,
the overheads are quite small.

The four components of overhead are shown in Fig-
ures 7 through 10. All the overheads decrease with
increasing grain size, which means we can expect im-
proved performance from newer, larger machines. This
prediction is confirmed by the timings in Table 1. Inter-
estingly, communication overhead is the least significant
component of the overhead, in conirast to the majority
of parallel scientific algorithms. The largest component
of the overhead is the complexity, which arises from re-
dundant computation of multipole moments during the
construction of the tree.

Ngral’n =

T T T T YT A\ T T T

100 |-

10

[+X. 5 3 ey iaa s gl b1 il

0.4 1 10 100
Number of processors

Figure 5: Speedup vs. number of processors.

1 o 2 aaal M U T T T Sy | " PRI S S Y

rein sisa (4/N,..)

Figure 6: Overhead vs. grain size.

LB B R |

vl

PRI

o snel

arain sise (N/%0)

Figure 8: Waiting overhead vs

. grain size.

s Npu=1
4 Npy=3
s Npu=t
s Ny=8
» Nyu=18
= Nyw=32
= Npm=84
* N..=128
* N =268
* Npy=512

0.01 | ue i aa

Figure 9: Imbalance overhead vs. grain size.

01l

0.001

B

Figure 10; Communication overhead vs. grain size.

References

[1] J. Barnes and P. Hut, “A Hierarchical O(NlogN)
Force-Calculation Algorithm,” Nature, 324, 446-
449, 1986.

[2] A.W. Appel, “An efficient Program for Many-Body
Simulation,” SIAM J. Sci Stai. Comput., 6, 85,
1985.

[3] L. Greengard, “The Rapid Evaluation of Poten-
tial Fields in Particle Systems,” PhD Thesis, Yale
University, Computer Science Research Report
YALEU/DCS/RR-533, 1987.

[4] J.G. Jernighan and D.H. Porter, “A Tree Code
with Logarithmic Reduction of Force Terms, Hi-
erarchical Regularization of All Variables and Ex-

plicit Accuracy Controls,” Astrophysical Journal
(Suppl.), 871, 1989.

[5] W. Benz, R.L. Bowers, A.G.W. Cameron, and
W.H. Press, “Dynamic Mass Exchange in Doubly
Degenerate Binaries 1. 0.9 and 1.2 Msolar Stars,”
Astrophysical Journal, 348, 647, 1990.

[6] G.C. Fox, “A Graphical Approach to Load Bal-
ancing and Sparse Matrix Vector Multiplication on
the Hypercube,” Numerical Algorithms for Modern
Parallel Computer Architectures, ed. M. Schuliz,
Springer-Verlag, pp. 37-62, 1988.

[7] G.C. Fox, M. Johnson, G. Lyzenga, S. Otto,
J. Salmon, and D. Walker, Solving Problems on
Concurrent Processors, Prentice Hall, Englewood
Clifts, NJ, 1988.

(8] J. Salmon, “Parallel Hierarchical N-body Meth-
ods,” PhD Thesis, California Institute of Technol-
ogy, 1991.

(9] J. Salmon, “CUBIX: Programming Hypercubes
Without Programming Hosts,” Hypercube Mulli-
Processors 1987, ed. M.T. Heath, SIAM, Philadel-
phia, pp. 3-9, 1987.

[10] W. Jaffe, “A Simple Model for the Distribution
of Light in Spherical Galaxies,” Mon. Not. Roy.
Astron. Soc., 202, 995, 1983.

[11] J. Salmon, P. Quinn, and M. Warren, “Using Par-
allel Computers for Very Large N-body Simula-
tions: Shell Formation Using 180K Particles,” Pro-
ceedings of 1989 Heidelberg Conference on Dynam-
ics and Interactions of Galaries, ed. R. Wielen,
Springer-Verlag, 1989.

