
Parallel, Out-of-core methods for N-body Simulation�

John Salmony Michael S. Warrenz

Abstract
Hierarchical treecodes have, to a large extent, con-
verted the compute-bound N-body problem into a
memory-bound problem. The large ratio of DRAM
to disk pricing suggests use of out-of-core tech-
niques to overcome memory capacity limitations.
We will describe a parallel, out-of-core treecode li-
brary, targeted at machines with independent sec-
ondary storage associated with each processor. Bor-
rowing the space-filling curve techniques from our
in-core library, and “manually” paging, results in ex-
cellent spatial and temporal locality and very good
performance.

1 Motivation
N-body methods are used in the numerical simula-
tion of systems ranging from the atomic to the cos-
mological. In addition, the mathematical techniques
developed in conjunction with the N-body problem
have found application in areas as diverse as elec-
tromagnetic scattering and stochastic process gener-
ation. The papers collected in this mini-symposium
[4], and its predecessor [1] offer ample evidence of
the breadth and importance of N-body methods.

A family of methods, collectively called
“treecodes”, use tree data structures to reduce the
time required to approximately evaluate a set of in-
teractions of the form:

ai =
X

j

F (ri; rj);(1)

where the pairwise interactionF , and the coordi-
natesri and rj are generalizations of the familiar

�This paper will appear in the Proceedings of the Eigth Conf.
on Parallel Processing for Scientific Computing, SIAM, 1997.

yCenter for Advanced Computing Research, California Insti-
tute of Technology and the NSF Center for Research in Parallel
Computing. johns@cacr.caltech.edu

zTheoretical Astrophysics, Los Alamos National Labora-
tory. mswarren@lanl.gov

force laws from Newtonian mechanics. Directly
evaluating (1) forN right-hand-sides, withN terms
in each summation requires requiresO(N2) opera-
tions. Treecodes typically produce approximate re-
sults inO(N), O(N logN) orO(N1+�) operations,
depending on the particular algorithm, and on ex-
actly what is being held constant asN increases.
Storage is usually proportional toN .

Very roughly speaking, typical astrophysics ap-
plications require about80N bytes of storage and
30000N floating point operations per integration
timestep. A ten-million body simulation is nearly
state-of-the-art, and few (if any) simulations have
been done with more than 50 million bodies. The
problem is not lack of CPU cycles – a 200MHz Pen-
tium Pro processor can achieve the cycle count in
a couple of months, and a small cluster can reduce
the time to a few days. The problem is that mem-
ory is too expensive, so that systems with 1-10GB of
DRAM are still quite rare, even though readily avail-
able CPU technology would allow important work to
be done on such a system.

As of October 1996, commodity, mass-market
memory prices were about $6/MB, while disk prices
were $0.1/MB, almost two orders of magnitude
lower. On the other hand, obtainable data rates from
disk are in the range of a few MB/s, approximately
two orders of magnitude less than from memory.
Even worse, the latency for a typical disk access is
five orders of magnitude greater than that for a mem-
ory reference (10 million ns vs. 60ns). Using disk as
dynamic storage will be a challenge, but one that of-
fers the opportunity to greatly reduce the hardware
investment required for very large N-body simula-
tion.

We have implemented out-of-core adaptive oct-
trees because of our extensive prior experience with
their numerical and computational behavior [6]. Our
traversal differs substantially from [2, 3], allowing
for a flexible criterion that decides whether a mul-

1

2

tipole is acceptable based on an error estimate that
includes both geometry and the contents of the cell.
Groups of bodies are tested for acceptability all at
once, and if the multipole is unacceptable, we dy-
namically decide whether to shrink the group or visit
the daughter cells of the moment. This we are able to
capture the essential features ofO(N),O(N logN),
O(N1+�), O(N2) and “vectorizing” algorithms all
within the same implementation.

2 Latency Tolerance and Bandwidth Econ-
omy

The first step is to formulate the algorithms and data
structures in a way suitable for out-of-core evalua-
tion. We are used to thinking in terms of floating
point operations: counting them, pipelining them,
finding ways to eliminate them altogether. The va-
lidity of this mindset is questionable in the context
of modern computer systems where uncached mem-
ory accesses can be an order of magnitude more ex-
pensive than floating point operations. It could be
disastrous in an out-of-core code where one million
“extra” flops might be no more expensive than a sin-
gle disk access. We must turn our attention primarily
to concerns related to data movement, with operation
count considerably less important.

Two concerns drive the design of out-of-core al-
gorithms. Latency tolerance and bandwidth econ-
omy. The first implies that whenever a datum is re-
quired from the disk, we must be prepared to wait
hundreds of thousands of cycles for it to be deliv-
ered. The second says that whenever we have gone
to the trouble of moving a datum from disk to mem-
ory, we must use it enough times to amortize the cost
of having done so.

We have chosen a simple approach to latency
tolerance. We simply ensure that all transfers to and
from the disk are sufficiently large that latency is
irrelevant. The conventional formula for the time,
t, to service a request is:

t = tl + s=b;

wheretl is the latency (10ms for a typical commod-
ity disk), b is the bandwidth (1.5MB/s for the same
disk) ands is the size of the request. If we ensure
that all transfers satisfys � tlb, (15kB for our typ-
ical case), then latency will not be a dominant fac-
tor in the overall performance. Of course, we have

now made the bandwidth problem somewhat harder.
We must design an algorithm that makes optimal use
of the available bandwidth but which is restricted to
transferring data in chunks no smaller than 15kB.
Multi-threading is an alternative approach to latency
hiding that allows the processor to do something else
while waiting for requests to be processed. Multi-
threading is essential if it is not practical to make
large requests as we propose to do, but effective
multi-threading often relies on special hardware fea-
tures, and we have not explored its use in treecodes.

To address the bandwidth problem, we must de-
sign our data structures and algorithms so that when-
ever a datum is moved from a disk to memory, we get
the maximum possible use of it before returning it to
the disk or disposing of it. We must also minimize
unnecessary copies, i.e., situations in which data that
has not been modified in memory is copied back to
disk anyway because the system wasn’t sure that it
was safe, or because “dirty” and “clean” data are in-
terspersed in a single page.

In summary, the following rules guide the imple-
mentation our out-of-core treecode:

� All disk transfers are in large (� 15kB) blocks.

� Every byte transferred must be used many
times.

� The total number of transfers must be mini-
mized.

3 The Page Abstraction
In order to use disk for dynamic storage, we must
first devise a mechanism for referring to the data that
resides on disk, and for transferring that data to and
from memory. One option is simply to use virtual
memory. It is a simple matter to allocate program
space, e.g., withmalloc , that far exceeds the ca-
pacity of memory. The OS is then responsible for
paging data to and from a “swap device”, typically a
disk partition dedicated to this task. Unfortunately,
the programmer has essentially no control over se-
lection of which pages to move, or when to move
them. Policies implemented by the OS have usu-
ally been designed for large multi-tasking, multi-
user systems with load characteristics and require-
ments far different from our treecode. In addition,
the OS generally lacks crucial information that could

3

guide a better strategy. Unless page-hits are recorded
by the hardware, or information is solicited from the
program itself, the OS does not know which pages
are heavily used and which ones are idle, making it
impossible to make an intelligent choice about which
pages to swap out. Themadvise function avail-
able on some operating systems is an attempt to ad-
dress this issue, but it is not universally supported,
and even where it is supported, the advice may still
be ignored or misunderstood.

The standard POSIX interface provides several
calls which can be used to transfer data to and
from disk. For example,read , and write ex-
plicitly request data transfers. Alternatively,mmap
and munmap create and destroy correspondences
between addressable memory and data on disk.
Whichever method we chose, the essential problem
remains: devise an abstraction that strikes the right
balance between clarity of expression and perfor-
mance. We want to hide the details of reading and
writing from disk, but control the swapping policy
so that performance doesn’t suffer.

We treat our disk-store as a sequence of fixed-
size, sequentially numbered pages. In memory, we
maintain a “working set” of copies of some of the
disk-pages. The size of the working set and the
size of the individual pages (a multiple of the un-
derlying OS page size) are determined during run-
time initialization. To refer to data in a page, we
usePgRef , which returns a pointer to an in-memory
copy of the page. The memory at that address will
not be replaced by another page from disk until
PgUnref is called, and even then, it will be kept as
long as possible.PgRef s accumulate, so a page re-
mains “locked” in memory as long as the number of
PgRef s exceeds the number ofPgUnref s. Much
of the data access in our program is read-only, so
we wish to avoid unnecessary copies back to disk.
PgUnref takes an argument which states whether
the caller has dirtied the page by modifying any data.
Dirty bits from multiplePgUnref calls are OR-ed
together. Before a dirty page is replaced in memory,
its contents must be written back to disk.

We use anad hoc, but effective least-recently-
used policy to select pages for replacement. Every
timePgRef is called, it increments a global counter
which acts as a timestamp, and places the value in a
structure associated with the page being referenced.

When we need to replace a page, we examine all
unreferenced paged, and choose the one with the
oldest timestamp. To reduce the number of writes,
we preferentially replace clean pages by dividing
their age in half before comparison.

This defines an interface to page-sized units of
storage. But our program works withbodies ,
sib group s, moments and so forth (see Sec-
tion 4), none of which are the same size, and all
of which are far smaller than an entire page. Thus,
we introduce a second layer, of “out-of-core point-
ers”, oocptr s, which are implemented as a struc-
ture containing a page number and an offset. We use
OOCRefto return a true pointer that corresponds to
an oocptr , andOOCUnRefto signal that we are
done with anoocptr . Oocptr s appear in several
places in the library where an in-core implementa-
tion might use normal pointers. Explicit page num-
bers andPgRef s, on the other hand, are generally
hidden behind theoocptr abstraction.

4 Data Structures
The fundamental data structure in a tree code is,
of course, the tree, and the fundamental opera-
tion is a tree traversal. A two-dimensional ver-
sion of the basic data structure is shown in Figure
1. In three dimensions, space is divided into cubi-
cal sib group s, each of which may contain some
terminal bodies as well as up eightmoment struc-
tures - i.e., a data structure that contains a pointer
to a daughtersib group , as well as numerical
quantities like mass, center-of-mass, and higher mo-
ments of the distribution within the region. In an
in-core version of the algorithm, the arrows in Fig-
ure 1 would correspond to normal “C” pointers, but
in the out-or-core implementation, they are imple-
mented asoocptr s. The depth of the tree is irreg-
ular and adapts to local variations in the density of
bodies. Amoment is only created when the num-
ber ofbodies in its region of space exceeds some
threshold,m. If there are insufficient bodies in the
region, then the bodies become terminal members of
the surroundingsib group .

The basic traversal algorithm is shown schemat-
ically in Figure 2. When amoment is ’visited’, a
numerical criterion is applied to determine whether
to use the moment data in the force calculation or

4

FIG. 1. The elements of the tree data structure are shown for a two-dimensional quad-tree with 64 bodies, and a

terminal thresholdm = 3. The upper left square shows just the bodies without any imposed tree structure. The other

squares aresib group s, which contain bothmoment data (represented as an inset square) and individual bodies,

stored together in memory. In addition to cumulative information about the contents the cell, themoment structure

also contains a pointer to a daughtersib group where more detailed information may be found. These are shown

as arrows in the figure and are implemented asoocptr s in the parallel out-of-core code.

5

Traverse(moment m){
if(!VisitAndTest(m)){

sg = OOCRef(DaughterOf(m));
VisitTerminals(group);
for(each moment, mm, in sg){

Traverse(mm);
}
OOCUnRef(DaughterOf(m));

}
}

FIG. 2. Pseudocode representation of the basic tree-

traversal algorithm.

to traverse the deeper, finer-grained levels of the
tree. Traverse is called repeatedly by a larger
loop that orders the force evaluations and allows the
programmer to useVisitAndTest routines that
consider groups of particles together, possibly imple-
menting a “local expansion”, or deferring force eval-
uation to a vectorizable loop that is executed once
per particle. Notice thatTraverse visits every
member of asib group whenever it visits one of
them. Therefore, by grouping all the moments in a
sib group together, we enhance fine-grain data lo-
cality, which in-turn improves our cache-hit rate and
overall performance. This is helpful to an in-core
implementation, but it is particularly important to an
out-of-core implementation because it allows us to
amortize the cost of theOOCRefand OOCUnRef
over the fairly substantial calculations implied by
VisitAndTest andVisitTerminals .

Data locality is further enhanced by the order in
which forces are evaluated on bodies. We choose the
order in which we compute forces to maximize re-
use ofsib group s in the tree. If the cache is large
enough to hold all thesib group s that contribute
to the force on a body, and we then compute the
force on a nearby body, we will find almost all the
information necessary for the second body already
in cache. We have found that by ordering particles
along a self-similar, space-filling curve, like the
Peano-Hilbert curve shown in Figure 3, we achieve
excellent spatial locality and cache hit rates [6].

Again, strategies that favor cache reuse in an
in-core implementation are crucial to an out-of-core
implementation. Even a very modest working-set

of a few hundred pages is large enough to store
the interaction set of a typical body. So the device
of ordering evaluations so that sequential bodies
substantially share interaction sets leads to very high
reuse rates for the working set and correspondingly
low swap rates in the out-of-core case.

The placement ofsib group s within pages is
not an issue for an in-core implementation because
there is no reason not to usemalloc to obtain space
whenever a newsib group is created. Since the
sib group itself is comparable in size to a typical
cache-line, there is not much benefit in carefully
arranging them with respect to one another. Many
sib group s, however, fit on a single out-of-core
page, and we must ensure re-use not only of the
sib group that has beenOOCRefed, but also the
others that happen to reside on the same page. Thus,
pages should containsib group s that are likely
to be used together. We achieve this by storing
sib group s at the same level in the tree together,
and ordering them along the same space-filling curve
used to order force evaluations. Thus, when a
new page is swapped in to satisfy anOOCRefto a
particularsib group , the othersib group s on
the page are nearby in space and they will probably
be accessed shortly, at which time they will already
be in memory, and subsequentOOCRefs will impose
minimal overhead.

Figure 3 illustrates the spatial clustering
achieved by ordering bodies along the Peano-Hilbert
curve. Inspection of Figure 3 (in color) reveals that
in the vicinity of any given point in space, there are
no more than four colors represented (eight in three
dimensions). The same spatial locality properties
will hold for sib group s at every level of the tree.
This suggests that we will need a working set suffi-
ciently large to hold, in the worst-case, eight pages
at each level of the tree. Even for systems with many
millions of particles, the tree rarely exceeds a depth
of 20. so we expect that only 160 or so pages de-
voted to our tree data structure should be an adequate
working set. Results in Section 7 confirm this hy-
pothesis.

5 Tree building and Sorting
Creating a tree ofsib group s from a random set
of particles, and arranging that thesib group s at

6

FIG. 3. A Peano-Hilbert curve induced ordering of 10000 bodies. Bodies are assigned the same color in groups

of 50 at a time, indicating how they would be grouped on pages in out-of-core storage.

7

each level are themselves ordered along a space-
filling curve is our next problem. Fortunately, both
tree-building and the organization ofsib group s
within pages is easily accomplished if the bodies
themselves are first sorted along the curve. It is
complicated, but not time-consuming, to compute a
key corresponding to path-length along the Peano-
Hilbert curve by interleaving the bits from an inte-
ger representation of the spatial coordinates in each
dimension. The sorted list of bodies may then be
examined sequentially andsib group s in the tree
may be allocated and completed in the desired order
with no out-of-core pointer-chasing or backtrack-
ing. As new bodies are examined, a “current” group
is maintained in normal memory. (The storage re-
quired is only proportional to the depth of the tree,
not the number of bodies). If the new body is out-
side the current group, we are certain to have seen
every member of the current group, so appropriate
computations to fill in themoment data structures
may be executed, and out-of-core space can be re-
served at the appropriate level to hold asib group
corresponding to the current group. Parents of the
current group are examined and completed until the
new body falls within the new current group. Now,
the new body is either added directly (if the num-
ber of bodies already contained is less thanm) to the
current group, or a new sub-group is created and the
bodies already in the group are moved to the sub-
group, which becomes the current group.

Thus, we have reduced the problem of out-
of-core tree-building to the problem of out-of-core
sorting. We use a bucket-sort, in which we first sort
into buckets which are themselves many pages in
length, but small enough to fit in memory. Then the
buckets are paged back in, and an in-core quicksort
algorithm is applied to each bucket. Rather than
implement sorting as a separate, atomic, stand-alone
procedure, we integrate the “bucketizing” phase into
the position-update from the “previous” timestep.
Thus, when we first learn the new position of a
particle, we immediately select which bucket it will
go in, and place it there directly, rather than first
copying it to disk, and then reading it back in from
disk only to select a bucket and ship it back out.

There appears to be considerable tension be-
tween optimization for out-of-core performance (and
perhaps to a lesser extent, cache performance) and

generally accepted standards of good programming
practice. Good program design stresses modular-
ity and encapsulation with each software component
having a clear, limited interface and behavior. Ap-
plied naively, these ideas can lead to many more
page-swaps (or cache misses) than necessary. For
example, a standard high-level program design for
an N-body code would probably separate sorting,
tree-building, force computation, diagnostic accu-
mulation and time integration into separate, inde-
pendent modules. Each of these modules requires
a complete scan of the list of particles, so the entire
data set would be paged in and out many times. To
recover performance, one combines the time integra-
tion, diagnostic accumulation and force computation
together in a single pass. More dramatically, the sort
is split into two phases, as described above. This
leaves only two cycles of paging, which may result
in a threefold speedup if the program is bandwidth
limited. But it also results in a code where modu-
larity is far less apparent. Sorting, in particular, no
longer exists as a clear, separable component so it is
more difficult to apply the results of other research
efforts in parallel sorting.

6 Parallelism
Interprocessor communication in a parallel system
has performance characteristics similar to commu-
nication between disk and memory. Large latencies
favor long messages and interprocessor bandwidth is
typically far lower than internal memory bandwidth.
If an implementation is capable of tolerating laten-
cies and bandwidths to local disk, it is likely that it
can also tolerate latencies and bandwidths to remote
processors.

In fact, we have implemented a parallel out-of-
core treecode primarily through a small extension
of the uni-processor paging abstraction. In addi-
tion to a page number, the identifier that is passed
to, e.g.,PgRef , also contains a processor number.
The implementation ofPgRef et al distinguishes
between local pages, which are accessed withread
andwrite , and remote pages, which are accessed
via message exchange with the a “server” on the re-
mote processor. There is no problem with coherence
because once the tree is built (a purely local oper-
ation involving writing data), all further access is

8

read-only. We must be certain to purge all remote
pages between timesteps, though. The “server” is
simply an occasional poll for page requests during
force evaluation. It is remarkable that this simple,
blocking, synchronous approach is successful. At
the outset, we assumed multiple servers would have
to run asynchronously in separate threads but per-
formance is entirely adequate without such sophisti-
cated infrastructure.

With this minor extension to the underlying pag-
ing system, the implementation of the basic tree
traversal, force evaluation and time integration al-
gorithms was completely unchanged. Some addi-
tional code was added to the tree-build phase to al-
low processors to build local trees independently,
and then merge thosesib group s whose spatial
domain extends over multiple processors. There is
also a requirement for parallel data decomposition
code which assigns processors to regions of space
and moves bodies appropriately, but both of these are
essentially identical to the equivalent components in
in-core parallel codes.

7 Results
We have implemented the ideas above in portable
ANSI C. Interprocessor communication is through
a simple API of our own design which, in turn, may
directly use Unix sockets, or many of the open or
vendor-specific communication libraries, e.g., MPI,
NX, etc. The results here are for a cluster of 16
200MHz Pentium Pro systems running Linux each
with 128MB of memory and a 1GB EIDE disk par-
tition devoted to out-of-core scratch space. The peak
performance of this system is 200Mflops/processor,
but in practice, a highly optimized vector of in-
cache, gravitational interactions runs at approxi-
mately 86Mflop/processor. The communication sys-
tem is very modest – consisting of a single 100baseT
ethernet switch, delivering a bi-directional bisection
bandwidth of 80MB/s and latency of150�s to user-
level code. The entire system is constructed from
mass-market commodity parts and is extremely cost-
effective, with a total purchase price in autumn 1996
of under $60000.

All benchmarks reported here are for uniformly
distributed collections of particles. The tree has a
maximum terminal occupancy,m = 3. We simply

have not had time to run highly non-uniform cases
but we believe, based on our in-core results, that
the non-uniformities typical of astrophysical systems
will not introduce significant new overheads. The
runs involved between 1000 and 1350 monopole in-
teractions and approximately 150 MACs per body.
Higher order moments could be employed without
substantially changing the code, but the bandwidth
vs. operation-count tradeoffs need to be carefully
considered. Measured times are for an entire, realis-
tic timestep, i.e., they include sorting, tree building,
force evaluation and time-integration. In the parallel
case, they do not include redistribution of particles
to processors, but we expect this to be a small addi-
tional overhead which will be substantially offset by
the fact that the particles begin subsequent timesteps
almost sorted.

Figure 4 shows overall performance of the sys-
tem for a fixed size problem (5 million bodies) and
for a problem that grows with the number of pro-
cessors (5 million � P bodies). The abscissa has
been scaled to factor out the average work per pro-
cessor, so that the departure from horizontal indi-
cates parallel overhead in the fixed-size case. Note,
though, that for a fixed size problem, as we add pro-
cessors, more and more of the data fits in memory, so
the observed “super-linear” speedup is not unreason-
able. The largest system is an 80 million body model
which took 5363 sec/timestep on 16 processors. The
single-processor, 5 million body model took 4346
sec/timestep. In contrast, our in-core code integrates
a 500000 body model with comparable accuracy in
378 sec/timestep, so the net performance cost of us-
ing disk achieve a factor of ten increase in dynamic
storage capacity is in the neighborhood of 15%.

The Linux kernel maintains a “buffer cache” of
disk pages in OS-controlled memory which grows
and shrinks in opposition to user-memory. This
feature significantly improves normal operation, but
makes benchmarking difficult because if we restrict
ourselves to a small working set, and then ask to
move pages to and from disk, there is a very good
chance that the kernel will find the pages in a buffer
cache and not need to query the disk controller at
all. The net result is that wall-clock times for I/O
operations are often far less than one might expect
based on hardware disk latencies and bandwidths,
and they are strongly influenced by the vagaries of

9

FIG. 4. Scaling behavior up to 16 processors for a fixed size problem (5 million bodies) and a problem that

grows with the number of processors (5 million� P bodies).

the kernel’s buffer cacheing policies and the size of
the system’s DRAM. Rather than attempt to isolate
these effects, we simply report the number and size
of pages swapped, with the assumption that this
provides a lower bound on performance.

Figure 5 shows paging behavior for a simulation
with 1 million bodies on a single processor. The
model requires about 72 MB of storage altogether.
Runs were made with different combinations of the
page size and the number of in-core pages. The
amount of swapped data is flat over a large range
of in-core sizes, and falls dramatically as the in-
core size approaches the size of the entire data
set. Furthermore, once the number of in-core pages
exceeds about 200, there are diminishing returns in
making it larger, allowing one to increase the page
size instead. Thus, one can amortize disk latency as
long as the in-core memory exceeds about200tlb,
i.e., only 3MB of DRAM is needed to effectively
run out-of-core with a commodity EIDE disk. It is
tempting to try to fit this in cache, but unfortunately
it is almost impossible to get explicit control over
cache behavior on modern processors.

8 Conclusions and the future
We have demonstrated that disk can be used for dy-
namic storage in an “out-of-core” implementation of
an astrophysical treecode. An 80 million body model
can run on a cluster of 16 PC-class systems. Simu-
lating such a model over the age of the Universe will
take a couple of months, but one should recall that
the computer is extremely economical, costing under
$60000. One can use cost-effective processors, mod-
est amounts of DRAM, and much larger amounts of
disk to address N-body problems that had heretofore
been accessible only on the largest of parallel super-
computers. On the other hand, one can now imag-
ine integrating extraordinarily large systems (billions
of particles) on large MPPs with independently ad-
dressable disks.

Finally, we observe that memory hierarchies are
getting deeper, with the gap between processor clock
rates and memory latency continuing to widen. Out-
of-core methods are designed to tolerate the ex-
treme latencies of disk systems, but they may also be
adapted to make effective use of caches and memory
hierarchies in more traditional systems. Some ap-

10

FIG. 5. Aggregate swapped data vs. in-core storage for a 1 million body model and various parameter choices

of page size and number of in-core pages.

11

proaches to the next generation of “petaflop” com-
puters [5] will display latencies (measured in clocks
ticks) as large as those we observe today in disk sys-
tems, so we might expect that optimal algorithms on
those systems will be closely related to the out-of-
core algorithms of today.

References

[1] D. H. BAILEY ET AL ., eds.,Seventh SIAM Confer-
ence on Parallel Processing for Scientific Comput-
ing, SIAM, 1995.

[2] J. E. Barnes and P. Hut,A hierarchical O(NlogN)
force-calculation algorithm, Nature, 324 (1986),
pp. 446–449.

[3] L. Greengard,The Rapid Evaluation of Potential
Fields in Particle Systems, PhD thesis, Yale Univer-
sity, 1987.

[4] M. H EATH, V. TORCZON, ET AL., eds., Eigth
SIAM Conference on Parallel Processing for Scien-
tific Computing, SIAM, 1997.

[5] IEEE COMPUTERSOCIETY, Frontiers ’96, 1996.
[6] M. S. Warren and J. K. Salmon,A portable, parallel,

versatile N-body tree code, in Bailey et al. [1].

