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We consider treecodes (NM-body programs which use a tree data
structure) from the standpoint of their worst-case behavior. That is, we
derive upper bounds on the largest possible errors that are introduced
into a calculation by use of various multipole acceptability criteria
{MAC). We find that the conventional Barnes—Hut MAC can introduce
potentially unbounded errors unless 0 < 1/\/5, and that this behavior
while rare, is demonstrable in astrophysically reasonable examples. We
consider two other MACs closely related to the BH MAC. While they do
not admit the same unbounded errors, they nevertheless require
extraordinary amounts of CPU time to guarantes modest levels of
accuracy. We derive new errar bounds based on some additional, easily
computed moments of the mass distribution. These error bounds form
the basis for four new MACs which can be used to limit the absolute or
relative error introduced by each multipole evaluation, or, with the
introduction of some additional data structures, the absolute or rms
error in the final acceleration of each particle. Using the Sum Squares
MAC to analytically place a 1 % bound on the rms error in a series of
test models, we find that it significantly outperforms the 8§ =0.65 BH
MAC in terms of both accuracy (mean, rms, and maximum error) and
performance (floating point operation count). € 1934 Academic Press, Inc.

1. INTRODUCTION

Integration of the motion of N independent bodies under
their mutual gravitational interaction has been an impor-
tant tool in computational astrophysics for many years.
Similar, so-called “all-pairs” problems involving the mutual
interactions of N objects arise in molecular dynamics with
charged species and in computational fluid dynamics. Until
recently, it was believed that such problems required time
proportional to N2, because the long-range nature of the
gravitational interaction (and the analogous Coulomb
interaction and Biot-Savart law) requires that one consider
the contribution of N — 1 terms in the update of each body.
Algorithms which use a hierarchical data structure and an
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approximate force-law for aggregates of bodies were intro-
duced independently by Appel [1], Jernigan and Porter
[2], and Barnes and Hut [3]. Subsequently, a number of
other authors have expanded on the theme of multipole
approximations and hierarchical data structures [4-8]. The
computer programs described by these authors are known
collectively as “treecodes” because the underlying data
structure in all cases is a tree. These programs typically can
compute the approximate interactions between all N bodies
in a system in time proportional to N log N or even N. This
qualitative change in the time-complexity has led to simula-
tions much larger than were possible with direct-summation
algorithms [9].

Obviously, the detailed structure of the tree and how it is
constructed is of great importance in designing treecodes.
Nevertheless, except for the terminology, we shall not
concern ourselves with tree construction in this paper, as it
appears to constitute a relatively small fraction of the total
expense in using treecodes. Tree construction has been
extensively covered in the literature [3, 10, 11, 7].

In this paper we shall assume that trees are made up of
cells. A cell represents a bounded region of space and con-
tains some aggregate information about the bodies that lie
within that region. Often, a cell is a cubical volume [3], but
it need to be [7]. Similarly, the aggregate data is often a
multipole expansion [3], but again, it need not be [8].
Cells may also contain information (e.g., pointers) that can
lead a program to daughter cells which represent smaller,
disjoint subspaces which make up the parent. In this way,
cells are organized into a tree. Some cells are terminal, which
means that they do not contain daughter cells. Instead, they
contain pointers to the bodies that lie within the region
bounded by the cell. Terminal cells are often defined to have
exactly one body [3], but it is sometimes desirable to
construct trees whose terminal cells contain several bodies

[11].
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Treecodes may be broadly classified according to the
most complicated type of interaction that is explicitly
evaluated by the implementation. Body—cell treecodes
[3,7,2] compute interactions between individual bodies
and cells in a hierarchical tree. These interactions are essen-
tially the evaluation of the far field of a multipole expansion.
Typically, O(N log N} interactions must be evaluated to
find the acceleration on N bodies. Conversely, cell—cell
treecodes [ 1, 5, 6, 8] rely on interactions (sometimes called
“translations” in the literature) between pairs of cells, both
of which contain numerous bodies. Typically, these interac-
tions are much more complicated than the corresponding
body-cell interactions, but the number of them is bounded
by O(N). The trade-offs between accuracy, performance,
and the constants of proportionally that are hidden by
the “big-O” notation are still unclear. Owing to their
widespread acceptance in the astrophysics community, we
shall concentrate on body—cell treecodes in the remainder of
this paper.

Body—cell treecodes all share a common control struc-
ture. Each body is treated independently, without reference
to the interactions of nearby bodies. Whenever the force on
a body is required, the tree is traversed, starting at the root.
Whenever a cell is visited, decisions are made to determine
how to proceed. If the cell is terminal then direct body-body
interactions with each of the bodies within the cell are
computed, and the traversal terminates. Otherwise, we ask
whether the multipole expansion stored in the cell will
provide an adequate approximation for the effect of the
contents of the cell on the body. This test is the “multipole
acceptability criterion,” (MAC). The test is based on
geometric considerations about the size of the cell, the loca-
tion of the body, and, perhaps, the contents of the cell. If the
MAC is satisfied, then a body—cell interaction is computed
and the traversal (down this branch of the tree) terminates.
Otherwise, each of the children of the cell is traversed in
turn. This formulation of the tree traversal is naturally
recursive. It maps immediately into a computer program in
a language that supports recursion, e.g., C, Lisp. Alter-
natively, it is possible to formulate the traversal iteratively
so it can be expressed in FORTRAN.

A well chosen MAC is crucial for treecodes. It strongly
influences speed and accuracy, and in a parallel implemen-
tation, it influences memory usage and utilization of parallel
processing hardware [11]. Whenever the MAC succeeds,
time is saved, but an approximation is made and errors of
some magnitude are introduced into the result. Thus, the
MAC must strike a balance between speed and accuracy.
The remainder of this paper is devoted to the analysis and
optimization of various MACs.

In Section 2, we introduce three simple MACs that could
be easily adapted to work with almost any treecode. In
Section 3 we argue that the MACs shouid be judged on the
basis of worst-case (rather than mean, rms, or median)
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accuracy, and we compare the three simple MACs in terms
of performance at a specified level of accuracy. In Section 4
we introduce three new MACs which rely on additional
“moments” of the mass distribution in a cell and which
deliver much tighter error bounds than the three simple
MACs. These can be used to guarantee limits on the
absolute or relative errors introduced by each interaction,
or limits on the total error. The “Sum Squares MAC”
delivers a guaranteed level of accuracy but its performance
is difficult to estimate a priori. We compare the Sum
Squares MAC and the three simple MACs in three separate
test cases and find that it not only guarantees far better
accuracy, but that it delivers superior average performance
as well. Appendix A provides details of an example problem
which behaves far differently from what one would expect
based on previous semi-empirical treatments of errors in
treecodes. Appendix B contains detailed derivations of the
multipole expansions and error bounds used in the rest of
the paper.

2. THREE SIMPLE MACS

2.1. The Barnes—Hur MAC

In their original formulation, Barnes and Hut [3 ], intro-
duced a parameterized MAC based on an opening angle, 6.
The BH MAC asserts that the multipole approximation is
acceptable only if the ratio of the size of a cell to the distance
from the body to the center-of-mass of the cell is less than
a tunable parameter, 6. The geometry is illustrated in Fig. 1.

Obviously, the precise value of the parameter 8 is crucial.
A very low value implies that a body must be very distant
from a cell before the multipole approximation is
acceptable. Since the multipole approximation is rarely
acceptable, the tree is traversed to a deeper level, and a large
number of interactions are computed. A larger value of 0
implies greater confidence in the multipole approximations
and fewer interactions. The number of interactions scales
approximately as 672 [11], so it is clear that the
performance of the algorithm is sensitive to 6. Astro-
physical simulations employ a fairly small range of
values, 0.7 < 0 < 1.0, and the multipole approximation is

cm/

FIG. 1. Geometry for BH MAC test. The multipole approximation is
acceptable if and only if s/r < 8.
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usually terminated after the quadrupole term. However,
Appendix B shows that it is a simple matter to extend the
multipole approximation to arbitrarily high order.

2.2. The Min-Distance MAC

The BH MAC of Fig. 1 is based on the rather vague (but
certainly correct) assertion that the accuracy of a multipole
approximation at location X is determined by the ratio of
the “size” of the cell, to the “distance” from X to the cell. In
Appendix A we find that the BH MAC can introduce sur-
prisingly large errors which arise when a particle is near the
edge of a cell, but far from its center-of-mass. This suggests
an alternative MAC which substitutes the minimum distance
from a body to any point in the cell for the distance used by
the BH MAC. We shall refer to this as the “minimum-
distance” (MD) MAC. The geometry is illustrated in Fig. 2.

One useful aspect of the MD MAC is the fact that it is
completely independent of the contents of the cell. That is,
it is possible to evaluate the MD MAC without knowing
anything about a cell other than its size and location. In
contrast, the other MACs we consider may be evaluated
only after the center-of-mass has been determined, which in
turn requires that the positions of all bodies in the cell are
known. The ability to evaluate the MAC before the contents
of a cell have been determined makes it attractive for use on
paraliel distributed memory computers [ 11, 12], where one
might wish to evaluate the MAC for cells whose data reside
in another processor's memory.

2.3. The Bmax MAC

Another MAC is motivated by Eq. (70), according to
which the largest possible error, for any distribution of
material in a cell, is proportional to the magnitude of the
monopole term, and a monotonically increasing function of
boax/r, where b, is the maximum distance from the
multipole origin, rg, usually taken to be the center-of-mass
of the cell, to any other point in the cell, i.e.,

(1)

bmax =Max |x —ry|.
xeC

Since the error is an increasing function of b, /r, it is

FIG. 2. Geometry of for the MD MAC criterion. The multipole
approximation is acceptable il and only if s/r < 0.
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FIG. 3. Geometry of for the Bmax MAC. The multipole approxima-
tion is acceptable if and only if b, /r <8.

natural for b, /r to appear in the MAC. The “Bmax”
criterion, shown in Fig. 3, allows that the multipole
approximation is acceptable iff b, /r <0. Like the MD
MAC, it also eliminates the source of error that gives rise to
the detonating galaxy in Appendix A.

3. ANALYSIS OF SIMPLE MACS

We now have three MACs, which may be used with
muitipole expansions of arbitrary order and arbitrary
values of f. It is imperative that we find some consistent
and meaningful way to compare these methods with one
another. The ultimate goal is not controversial: one’s
simulations should run as fast as possible, subject to the
constraint that errors are not introduced which adversely
affect the “physics.” In practice, the question of how large an
error is acceptable is a difficult one. We propose to avoid the
issue and leave it up to the “user” who is clearly better
qualified to assess when errors of a given magnitude are
acceptable and when they are not. We cannot avoid the
issuc entirely, however, because we must determine the
kinds of errors we are talking about.

The consensus in astrophysics [13, 14, 10] has been that
it is acceptable to measure, e.g., rms errors, in a very small
number of model systems, The measured errors are deemed
“typical,” and further simulations can be performed using
the MAC and values of @ and p that have been certified by
this semi-empirical validation. In contrast, the applied
mathematics community prefers to rely on rigorous error
bounds [4, 8], despite the fact that adherence to rigorous
bounds has led to extremly expensive methods, at least
compared to the empirically “acceptable” MACs in use in
astrophysics (but see Section 4). We are firmly on the side of
the applied mathematicians on this question. We find the
model presented in Appendix A to be compelling evidence
that it is far too easy to be misled by semi-empirical
methods. If a detonating galaxy like that in Appendix A can
slip through the cracks of semi-empirical validation, then
the sieve is leaky indeed.

We believe that running test models through the MACs
at various values of & and p is both time-consuming and
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ultimately not a satisfactory indicator of reliability, Unfor-
tunately, it is difficult to see how the empirical analyses can
be significantly improved. Certainly, one could imagine a
suite of tests which would include, among others, isolated
ellipticals and disks, equal and unequal pairs of galaxies in
various orbits and orientations, triplets, complex inter-
acting systems, cosmological examples from various epochs,
etc., not to mention examples from other disciples where
treecodes show promise such as molecular dynamics and
fluid mechanics. It would be extremely time-consuming to
analyze such a suite, and, more importantly, it would be
impossible to know that it was complete. Is there, for exam-
ple, another pathological configuration lurking, untested,
just outside the domain covered by the suite? The failure of
previous empirical studies to detect a situation as simple as
Fig. 12 make us pessimistic about our ability to design a
complete suite of empirical tests.

The alternative to additional empirical testing is the
application of analytic methods. It is possible to place
strong, analytic bounds on the errors arising from the multi-
poele approximation and to adjust the MAC so that one is
mathematically guaranteed to obtain a specified level of
accuracy. Applied naively, this procedure implies very low
(and hence costly) values of # and/or the use of very
high-order multipoles. We shall return to this in Section 4,
where we discuss an cconomical and mathematically
defensible alternative MAC,

The likelihood of obtaining an error comparable to the
worst case is, of course, small, but it cannot be ignored, as
the detonating galaxy of Appendix A attests. The configura-
tion of particles in real simulations is anything but random,
50 it is unwise to discount a worst-case analysis simply on
the basis that it requires a “conspiracy” in the configuration
of bodies. The detonating galaxy of Appendix A requires
just such a conspiracy, and it constitutes an entirely
reasonable intermediate state of an interesting simulation.

3.1. Worst-Case Error Analysis

We shall be computing dimensionless relative errors and
all the MACs under consideration use a dimensionless value
of 0, so we may, without loss of generality, restrict attention
to a unit cell with unit mass and a force constant of unity.
We are secking the distribution of mass that leads to the
most inaccurate multipole approximation of a given order
p, at a location acceptable to a particular MAC with a given
value of #. Intuitively, the multipole approximation is least
accurate when a large portion of the mass is far from the
center-of-mass of the cell. Thus, we conjecture that the
largest errors occur when the mass distribution consists of
two point masses at opposite corners of the cube, ie.,
segparated by \/3 Furthermore, we conjecture that the
worst-case for the position of the measurement point is as
near as possible to one of the masses, i.e., on the line that
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connects the two point masses. The situation is now one-
dimensional and is represented schematically by Fig. 4 and
analytically by Eq. (2). The relationship between the values
of x,, x,, and r depends on which MAC is under considera-
tion, but in any case x,, x,, and r are determined trivially
from Eq. (2) once m, is chosen:

n11+m2=1

m1x1+m2x2=0

.. _[s3 BHorMD )
z R Bmax
1/8 BH or Bmax
r=
x,+1/6 MD.

The exact acceleration, a.,,,, the order-p multipole
approximation a,,,, and the relative error e are readily
computed as follows:

n, + s
a =
T r=x) (r=x,)
1 » My x|+ My X5
ap=s L (n+1)———— (3)
r n=>0 4
aexacl_a(p)

e =

aexacl

The problem is thus reduced to a one-dimensional
optimization, ie., find the value of m, in the range
0 < m, <1 that gives rise to the largest possible value of e.
Simple numerical techniques using parabolic interpolation
[15] provide us with a maximum possible relative error for
any (0, p) pair and any MAC. The results are shown in
Fig. 5.

1/8
X, CM X, r BH
el
1/8
X CM X, r MD
] V3
. L/8
X1 ™M X2 ¥ Bmax

——

1

FI1G. 4. Relationships between positions of two point masses inside
cell (at x; and x,), and the point at which the acceleration is measured, r,
for the three MACs,
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FIG. 5. Plot of maximum fractional error in the acceleration, as a
function of & for values of the multipole order, p=1, 2, 4, and 8, and the
BH, MD, and Bmax MACs. The different values of p may be distinguished
on the plot by their asymptotic slope at small 8, for which e oc 82+, It is
worth noting that the p=1 results are valid as well for p=0, ie.,
monopole-only calculations, since the dipole moment about the center-oi-
mass vanishes exactly.

The errors displayed in Fig. 5 are an order of magnitude
or more worse than the empirical results obtained by a
number of authors [13, 16, 14, 10]. We may account for
this discrepancy by noting that the other authors report an
rms or an average error. Errors approaching the bounds set
by Fig. 5§ are atypical but not impossible.

Inspection of Fig. 5 reveals that even modest accuracy
requires either a very low value of 8, or a very high order
multipole approximation. For example, relative errors of
5% or less are guaranteed by the standard (p=2) BH
MAC only for # <0.25. Since the number of interactions is
roughly proportional to 8~* [11], such a simulation will
compute almost 30 times as many interactions as one per-
formed with a more conventional value of # =0.75. On the
other hand, the # = (.75 simulation risks the introduction of
unbounded errors by the detonating galaxy mechanism of
Appendix A. The situation is only somewhat better if one is
willing to evaluate the multipole approximation up to order
p =28, where 5% error bounds are guaranteed with 8 < 0.42.

3.2. Performance Considerations

Figure 5 is not immediately useful for assessing which
MAC is optimal for achieving a desired level of accuracy.
Different MACs cannot be compared at the same value of 8
because the same value of # leads to vastly different com-
putational expense when used with two different MACs.

SALMON AND WARREN

There are two possible ways to compare MACs. One could
fix some measure of accuracy and compare on the basis of
computational expense, or one could fix the computational
expense and compare on the basis of accuracy. For the pur-
poses of this discussion, the measure of accuracy employed
is the maximum possible relative error in the acceleration.

It has been noted [3, 13, 10, 11] that the computational
expense of a treecode depends on the details of the particle
distribution. Thus, we do not have the luxury of a precisely
defined, problem-independent measure of the computa-
tional expense of a given MAC. However, Salmon [11]
shows that the number of interactions required to compute
the force on ali particles in a treecode is proportional to the
average volume of the interaction region of a unit-cell,
regardless of the particular form of the MAC. The inter-
action region of a cell is defined as the region for which the
MAC fails for the parent of the cell but passes for the ceil
itself. That is, it is the region in which bodies will actually
interact with the cell. Computing this volume is a simple
exercise in analytic geometry. For the three MACs under
consideration, the interaction volume is

28n

V- ——

BH 363

28x 80 90° 36°

VMD=3_0T3'(1+4+2 +4TE) {4)
28n

v
Bmax — 393 mean(bmax)

Note that the expression for the interaction volume of the
Bmax MAC contains yet another average. Unlike the other
two MACs, the interaction volume of a cell depends on the
contents of a cell. In particular, it depends on the value of
b ay - Clearly, we have

3\/_<bmax\3\/—

(3)

from the geometric considerations, but it is difficult to be
more precise. For a contrived ensembie of unit-cells in
which the center-of-mass is a random variable uniformly
distributed within the cell, we have

mean(b? 2.355.

(6)

max )

Lacking a compelling reason to choose a different value, we
shall use the value in Eq.(6) when a specific value of
V¥ max 18 required. We note, however, that the true value is
dependent on the particulars of the particle distribution,
and the only general statement one can make with certainty
1s Eq. (5).

Additional complications arise when comparing different
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values of p. We may characterize the p-dependence of the
computational expense, together with the MAC and 4
dependence as

Tcompule ac VMAC(G] f(p)a (7)
since the total number of interactions is proportional
to Vuac(f), and the computational expense of each
interaction clearly depends on the multipole order p, but
not on # or the MAC.

Evaluating the multipole approximation even at low
order on modern processors is an extremely delicate affair.
The real time required to perform an interaction depends
strongly on parameters of the particular computer and
implementation and it may also depend on such details as
how recently nearby pieces of memory have been accessed.
However, we may draw some tentative conclusions based
on an ad hoc model of the computational expense. In
Salmon [11], it is shown that the number of additions and
multiplications required to compute a body—cell interaction
with multipole terms through order p is roughly propor-
tional to (#3°). This analysis does not include the time
required to compute the distance vector r itself, nor does it
include the time required to compute the 1/r from r, and of
course, the constant of proportionality is an unspecified
value of order unity. Somewhat arbitrarily, we adopt the
following expression for the computational expense of a
single interaction through order p:'

f(p)=2445 (p;r3).

(8)

Figure 6 shows a plot of T',pp.. versus relative error. In
principle, this plot answers the question of which MAC is
“optimal” for any desired level of accuracy. One simply
sclects the leftmost curve at the desired level of accuracy.
According to the figure, the MPD MAC, at various values of
p is superior to both the BH and the Bmax MACs. Not
surprisingly, as the required accuracy increases, the optimal
value of p increases as well, with p=4 dominating p=2
near a required relative accuracy of 10%. Similarly, p =8 is
superior to p=4 at a required relative accuracy of 1%. Of
course, intermediate values of p become optimal at inter-
mediate values of required relative accuracy. Figure 6 does
not directly give a value of 8. In practice, one must
determine a desired level of accuracy based on external
consideration, then use Fig. 6 to determine the optimal
MAC and value of p, and finally, use Fig. 5 to find the
appropriate value of 8 which gives the desired level of
accuracy for the specific MAC and value of p. For example,
for 10 % relative error, Fig. 6 tells us thatthep=2and p=4

! This expression has the correct asymptotic form, and roughly correct
values for p=0and p=2.
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FIG. 6. Plot of maximum fractional error in the force, as a function of
computation time, estimated as Vy.c(8) * f(p). for the BH, MD, and
Bmax MACs, and multipole orders, p=1, 2,4, and 8. ¥yac(8) and f(p)
are discussed in the text. The different values of p may be distinguished by
their asymptotic slopes at high accuracy, for which ¢ oc 77'7* 13, Note
that the time for the p=1 case is computed as ¥yac(f)f(0) because the
multipote expansion through order p=1 may be terminated after the
monopole term, i.e., p =0, since the dipole lerm vanishes identically.

MACs are approximately equivalent. Inspection of Fig. 5
reveals that 10% relative error can be achieved with p=2
and € = 0.54 or p=4 and 0 ~0.88. Alternatively, one could
use the conventional BH MAC with p =2 and 6 = 0.31, but
according to Fig. 6 this would be about twice as expensive.

Figure 6 however, must be used with great caution.
Equations (6), (7), and (8) which are used to generate the
abscissa of Fig. 6 are crude estimates and cannot precisely
reflect the running time of real simulations. In particular,
the scaling of execution time with p is highly implementa-
tion dependent, and the appropriate value of the mean
(b3..,) depends on the distribution of bodies in the simula-
tion. Rather than treat the details of Fig. 6 as anything more
than suggestive, it is recommended that treecode users
characterize the p-dependence and 6-dependence of their
specific code and problem domain and generate a problem-
specific analog of Fig. 6. Then the procedure outlined above
may be carried through with greater confidence.

4, A DATA DEPENDENT MAC

The MD MAC introduced in Section 2 is arguably supe-
rior to the BH MAC. In provides comparable worst-case
errors at somewhat improved performance and it does not
accept the particular configuration that gives rise to the
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detonating galaxy of Appendix A. Nevertheless, Figs. 5 and
6 imply that all three simple MACs require a great deal of
computational resources to guarantee modest levels of
accuracy. Accuracy of a few percent can only be guaranteed
with values of 8 and p that imply about 30 times as much
computation as is curently expended with p=2, §=0.75.
The observation that one cannot guarantee modest
accuracy without an extraordinarily small 8 is a disturbing
one. Despite the dangers, one is tempted to return to a
reliance on empirical studies which make clear that the
worst-case behavior is a fairly rare event. If one were forced
to use, e.g., #=0.25, fewer simulations would be possible,
and ultimately, less would be learned. There is another
alternative, however. If we can find a tight, easily computed,
analytic bound on the errors introduced by the multipole
approximation, then we can simply compute the bound
each time we evaluate a MAC and compare the bound with
a desired accuracy. This procedure is applicable no matter
what flavor of body—cell tree is in use [3, 2, 7]. In fact, with
some additional analysis it is even applicable to adapative
cell-cell, ie., O(N), treecodes.

To prevent confusion and to avoid long-winded repeti-
tion, let us define some terminology. We make no claim that
this terminology is in general use; it simply makes the
following discussion more precise. First, the acceleration of
a body is generaily the vector sum of N terms. That is, the
rerms are the result of individual body-body interactions
obeying Newtons or Plummer’s Greens function. Bodies
may be grouped into cells according to some geometric
criterion. The bodies in a cell each contribute a rerm to an
acceleration. The vector sum of all the terms contributed by
a single cell is referred to as a partial acceleration or just a
partial, It is the partial accelerations that are the subject of
the multipole approximation. We distinguish between the
approximate partial as computed according to the multipole
approximation, and the exact partial, computed by direct
summation over the bodies belonging to the cell. The
magnitude of the difference between the exact and
approximate partials is denoted Aa,.,. Similarly, the
magnitude of the difference between exact and approximate
total acceleration is denoted da,,,. The MAC is responsible
for determining when an approximate partial is accurate
enough to be used instead of an exact partial. Typical
body—cell treecodes use MACs with the property that the
number of partiais that contribute to any given total
acceleration grows logarithmically with increasing N.
Finally, we will use the notation [ x7] to denote an analytic
upper bound on the quantity x. These bounds are derived in
detail in Appendix B,

4.1. Absolute and Relative MACs

In Appendix B we show that the maximum possible
partial error after p multipole terms have been added is
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expressible in terms of moments of the absolute value of
mass distribution inside the cell. Equation (62), which
gives the maximum possible absolute error in a partial
acceleration after p multipole terms have been added, is
reproduced here:

L [Byyi]
440N < 3 T, Jap (“" ”’( 2Pt )
Byoo)
#(p*'”(La:fT?))'

The moments, B, are defined in Eq. (61), and d = |r —r| is
the distance from r to the origin of the multipole expansion.

The obvious application of Eq. (9) is in the form of an
“Absolute MAC,” whereby the multipole approximation is
acceptable if and only if

(9)

I—‘Aapanialv] ‘<- A partial» (10)
where [ Aa,,.;a | is given by the right-hand side of Eq. (9),
and A4, is a user-supplied parameter. Choice of 4,3, is
left to the discretion of the “user.”

This formulation is extremely flexible. It is entirely
possible for 4, ., to vary from one particle to the next. One
can use this to fine-tune the errors associated with different
bodies if external considerations make it important to
achieve high accuracy on only a subset of bodies, e.g., if an
individual-timestep integrator is in use [17-19]. One can
also achieve control of relative errors rather than absolute
errors, There are two possibilities. If one has access to an
estimate of the “exact” acceleration (partial or total),
perhaps from the previous timestep, then one can simply
arrange that A4,,, be set to some chosen fraction of the
magnitude of the exact acceleration. Alternatively, one can
use the monopole approximation as an estimate of the exact
acceleration, which leads to the “Relative MAC™:

Aa(p)(") L 1 I'B(,,Hﬂ
wmungﬁmu—bmdmzop+”( w”‘)
B
(1) (=5z)). (11)

The Absolute and Relative MACs depend critically on
the error bound set by Eq. (9). Since it is a strict analytic
bound, we can be sure that the error will not be exceeded.
However, if the error is often very much smaller than the
bound, we will find ourselves in much the same situation as
before, i.e., we will face the dilemma of, on the one hand, a
large amount of unnecessary work devoted to reducing an
upper bound which is rarely approached in practice, or, on
the other hand, the possibility of occasionally making unac-
ceptably large errors. Figure 7 shows percentiles of the ratio
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FIG. 7. Percentiles of |@punia |/l Gpseia | for the cosmological test
model. The data consists of only those partial interactions which were
“accepted” by Sum Squares MAC with f=0.01. The errors result from
using the monopole approximation, and the bound is computed from
Eq. (9) evaluated at (p=1). The mean ratio in this sample 1s 0.22. The rms
ratio is 0.28.

of partial errors to the bound set by Eq. (9) for partials
which were “accepted” by the Sum Square MAC in our
32,768 body test model (see TableI). Very small errors
indicate that Eq. (9) is not providing a tight bound on the
error, which in turn, results in missed opportunities for
using the multipole approximation and, hence, wasted
effort. Thus, although counterintuitive, it is desirable that
the errors shown in Fig. 7 be large. The figure demonstrates
that the bound set by Eq. (9) is very tight. In the mean, the
actual error is about 20% of the bound, with occasional
partials approaching the bound very closely.

Hernquist er @/, [20] have asserted that the physics of dis-
sipationless systems is best preserved when one controls
relative partial errors. Their argument rests on the assump-
tion that “the errors are random and cancel one another
out.” They go on to observe that “For tree algorithms, this
assumption may be violated, since a large number of par-
ticles may lie in a single box to which we apply a multipole
expansion. Errors in the forces from particles in the same
box are in fact correlated.” We would modify this observa-
tion only to amplify it from a possibility to a virtual
certainty. The entire advantage afforded by treecodes is
precisely their ability to aggregate the effects of large num-
bers of particles into a single multipole evaluation. The
errors (however large or smail) are not just correlated; they
are nearly identical. They further state that “In practice, our
numerical experiments indicate that it is unlikely that this

TABLE 1

Statistics Related to Relative Errors in Test Models

MAC Model Nmono N s 2N e F N oo Mean err Rms err Max err
BH §=0.65 18k Merger 117.3 590.0 1287 0.00117 0.00147 0.0135
32k Cosmology 74.6 3376 750 0.00167 0.00319 0.0701
50k Halo 738 5039 1082 0.00150 0.00203 0.0400
MDé=1.1 18k Merger 10§.1 4984 1098 0.00112 0.00141 0.0121
32k Cosmology 69.1 3192 708 0.00164 0.00317 0.0662
50k Halo 74.8 4404 956 0.00151 0.00199 0.0224
Bmax 8=10.7 18k Merger 122.1 5389 1200 0.00127 0.00165 0.0142
32k Cosmology 88.6 346.7 782 0.00178 0.00340 0.0706
50k Halo 731 4884 1050 0.00152 000216 0.0240
Sum Sq /=001 18k Merger 8292 0 829 0.00122 0.00138 0.00455
(monopole only) 32k Cosmology 5852 0 585 0.00132 0.00160 0.00571
50k Halo 11011 0 1101 0.00116 0.00131 0.00466
Sum Sq f=0.01 18k Merger 750.9 19.9 791 0.00113 0.00127 0.00453
(variable order) 32k Cosmology 5213 159 553 0.00120 0.00143 0.00536
50k Halo 963.4 32.1 1028 0.00105 0.0011% 0.00473

Note.

All errors are relative, i.., normalized to the exact acceleration on each body. The normalization is applied before statistics are computed. The

N pono a0d N4 columns list the mean number of the given type of interaction per body. The 2N qyuq + Npyone column is roughly proportional to running
time, assuming that quadrupole interactions are twice as expensive as monopole interactions.
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effect is critical, as long as the number of particles is <10*
for the usual choice of accuracy parameters.” For reasons
discussed in Section 3 and in Appendix A, we reject the idea
that one series of experiments on a single, isolated, static,
spherically symmetric system can be compelling evidence
for the validity of a method or parameter range. Our
experiments indicate (see Appendix A) that the “usual
choice of accuracy parameters” admit some very real
surprises.

Despite the apparent recognition of the inappropriate-
ness of their assumptions vis-a-vis treecodes, they [20]
conclude that:

Our analysis suggests that a criterion based on the error in the total
force on each particle, like that proposed by Salmon and Warren
[this paper ], can be dangerous. As we showed in §2, it is the relative
error in the force from each particle—particle interaction that must
be minimized to ensure that force errors are smaller than the effects
of two-body relaxation.... From the point of view of collisionless
dynamics, we assert that a criterion which limits the relative error
of each particle-particle or particle—cell interaction is more reliable
than those controlling the error in the total force.

We disagree with this conclusion. In particular, we dispute
the implication that limiting relative errors in particle—celi
interactions leads to force errors that are negligible com-
pared to two-body relaxation effects. Consider the error
behavior as N increases in a treecode operating with a
relative MAC imposing a fixed relative error on each par-
ticle—cell interaction. The discreteness noise falls as N —'/2,
so it can be made as small as one wishes by increasing N.
The force-evaluation errors introduced by the multipole
approximation, on the other hand, do not decrease to zero
with increasing N. Each particle will interact with essentially
the same large aggregated multipole cells. As N increases all
that changes is the number of bodies that are aggregated
together in the multipole cells. Neither the relative error nor
the absolute error will fall below a certain point (reached
when the number of bodies within the cell is sufficient to
faithfully represent a smooth density field) as N is increased.
Thus, it cannot be the case that force evalution errors are
negligible compared to two-body relaxation effects because
the latter can be made vanishingly small while the former
cannot, simply by increasing N. For a more dramatic
example, we refer to Appendix A.

We cannot object to a literal interpretation of the state-
ment that use of Absolute MACS (or any other, for that
matter) can be “dangerous.” Care is always advisable when
using an approximation technique. We feel, however, that
the implication that relative MACs like the conventional
BH MAC are superior to absolute MACs because they
better capture the nuances of dissipationless systems is
simply wrong. We believe that it is far more “physical” to
impose an upper bound on the total error rather than the
partial errors. That upper bound should be guided by,
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among other things, the magnitude of two-body relaxation
effects.

One could argue that a bound on the total error follows
from limiting the relative error of each acceptable partial.
This is effectively the strategy employed by the three simple
MAC:s and the Relative MAC. If the individual partials ail
have comparable magnitudes, then this scheme is a
reasonably efficient one for achieving the ultimate goal of
limiting the total error. However, if the individual partials
occur over a large range of magnitudes, then application of
a MAC that limits relative partial errors is not at all
efficient. One wastes a great deal of time evaluating the
small-magnitude partials to very high (absolute) accuracy,
despite the fact that most of the total error will be
contributed by the errors in the large-magnitude partials.
Figure 8 shows magnitudes of the partials in a typical
cosmological simulation. Relative magnitudes (normalized
by the total acceleration) occur over at least five orders of
magnitude. The user is faced with a dilemma. If one opts for
high relative accuracy, e.g., small 6, a great deal of effort is
wasted reducing the relative errors of partials which are,
themselves, small. On the other hand, if one opts for low
relative accuracy, e.g., large 8, then one runs the risk of a
single dominant interaction being computed with low
accuracy. The Absolute MAC does not suffer from this
dilemma. All partials are evaluated with an error below a
fixed, prescribed tolerance. When added together, it is
impossible for one outlying partial to dominate the total

32768 Body Cosmological Model, MD MAC #=1.1
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error. For this reason, we feel that the Absolute MAC is
superior to the other four MACs discussed so [ar.

4.2, Optimizations

As written, the Absolute MAC requires evaluation of a
fairly complicated and costly expression (Eq. (9)) each time
it is called. It is likely that techniques like those in [21] can
be used to greatly reduce the number of times the MAC
is called, at the expense of a few additional interaction
evaluations.

An additicnal optimization is extremely powerful if one
can arrange that the same value of 4., is used for every
body. Then Eq. (9) implies the existence of 4, satisfying
iff d’>d?,

Aa{p)(r)‘g-dpa.r(ia] (12}

When expressed in terms of &, the Absolute MAC is just
as fast as any of the "simple” MACs, yet by careful choice of
d.,, it delivers a guaranteed level of accuracy. It is, of course,
necessary to compute d,; for each cell by solving Eq. (9).
This is done in the tree-building phase of the computation

and is a negligible expense.

4.3. Sum MACS

The Absolute MAC, however, begs the question of an
appropriate value for 4., . It is conveniently left up to the
“user.” This is not entirely acceptable. After all, the value of
A amial depends not only on external numerical considera-
tions (how large an error is acceptable), but also on how
many partials will contribute to the total acceleration
(which itself depends on 4,,.,). We need to develop a
MAC that analytically guarantees

[ a0 | € Dot (13)

The tolerance, 4,, has units of acceleration and is deter-
mined by “physical” considerations beyond the scope of the
treecode, ie., questions of discreteness noise, integration
method, and the underlying physical system. It is properly
in the domain of the “user,” without requiring any intimate
knowledge of the mechanics of the treecode. It is important
to note that as far as the MAC is concerned, 4,,, is a com-
pletely arbitrary value which would presumably be supplied
by a sophisticated integrator operating on a per-particle
basis. In the absence of a sophisticated integrator, we set
Ao = f|a,yl, where a, is the acceleration of the body
computed for the previous timestep. Alternatively, one can
observe that discreteness noise in dissipationless systems
scales as N ~'/2 [20], which suggests that A,,, «c N V2. The
correct constant of proportionality must be governed by
other physical/numerical considerations.
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We begin with the inequality

Aatolalg Z rdapartiul-li (14)

partial

which leads to the following expression which describes the
“Sum MAC”:

Z rAaparlial—lsA:m- (15)

partiat

If one assumes that the errors from individual partials are
uncorrelated random variables then one also has

172
rms(amtal) “<\ ( Z FAaparlia]—lz) L] (16)
partial
which leads to the “Sum Squares MAC™:
Z rAaparLial—lz‘g-Afot' (17)

partial

In each of these two MACs, the set of partials which are
taken under the sum is unspecified. Clearly, for performance
purposes, the set of accepted partials should be as smali as
possible. Strictly speaking, this is a constrained optimiza-
tion problem, and as such, it is exceedingly hard to solve
exactly. The constraints are that the partials that are
selected must account for every body exactly once and
that the Eq.(15) or (17) be satisfied. The quantity to
optimize is the number of partials. As is often the case
with optimization problems, it is not necessary to find the
smallest possible set of partials that satisfies the constraints.
An approximate set will suffice.

We find that a method roughly analogous to “steepest
descent” works remarkably well and can be implemented
very efficiently using a priority queue.” Conventional
treecodes traverse the tree in an order governed by the tree
itself, e.g., depth-first, with each set of daughter cells taken
in a particular order. We propose to traverse the tree in an
order governed by the magnitudes of the partial errors (as
estimated by Egq.(9)). Instead of applying a MAC to
whichever cell happens to be “next” in some canonical
ordering of the tree, we always open the current worst cell,
i.e., the unopened cell having the largest value of [ da,,.a |-
When a cell is opened, it is removed from the priority queue
and values of [ 4a .. | for its children are computed and
inserted back into the priority queue. This process continues
until Eq. (15) or Eq. (17) is satisfied.’

2 A priority queue [22] is a data structure into which objects may be
inserted and from which it is easy to extract the largest (or smallest)
element.

 Minor difficulties arise because [ 4,00 |18 infinite when the body and
cell are closer than b,,,,. Since one is keeping a running total of errors, it
is obviously necessary to treat such situations separately.
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4.4. Further Optimizations

There are a number of possible ways to implement
priority queues [22]. Typically the cost of insertion and
deletion is logarithmic in the size of the queue. Experience
suggests that the queues arising in treecodes will contain up
to about 1000 entries. The cost of maintaining such queues,
while not unmanageable, is not entirely negligible either. It
may be worth amortizing the cost of the queue maintenance
over a number of timesteps. Note that upon completion of
the traversal with priority queues, the set of partials that
remains satisfies a simple criterion,

Fdﬂpamaﬂsﬂmaxa (18]
where 4,,,, is the largest key in the queue. Clearly, this is
just the Absolute MAC with 4, equal to 4. I the
value of 4,,.u were known in advance, the whole
machinery of priority queues could have been bypassed in
favor of a depth-first or breadth-first traversal using the
Absolute MAC. One traversal using one of the Sum MACs,
however, can provide a value of 4, that can be used for
several timesteps because, by design, the physical environ-
ment of a body should not change significantly during the
course of a single timestep (if it does the timestep is too
large). Thus, it may be profitable to recompute 4.,
(using a priority queue) every few timesteps, and perform a
traditional tree traversal with the Absolute MAC in the
interim. If desired, Eq. (9) can be used to provide an a
posteriori check of the sum square errors when the Absolute
MAC is in use.

4.5. Numerical Tests

We have already expressed our skepticism of empirical
numerical tests of MACs. However, despite the fact that a
positive result from an empirical test cannot be relied upon
as a certification of correctness, a negative result can refute
either the analysis or its underlying assumptions.

As discussed above, average or rms errors can mask a
variety of ills. We attempt to circumvent this by plotting, for
each MAC, percentiles of relative error, ie., errors nor-
malized to the magnitude of the total acceleration. This is
equivalent to plotting an estimate of the cumulative
probability that the relative error on a particular particle is
less than a given value. Cumulative probability plots convey
far more information about possible large-error “tails” in
the distribution than simple statistics like rms, mean, etc.
We have restricted ourselves to relatively modest numbers
of bodies in the test cases because it is important to be able
to calculate exact accelerations for comparison with the
approximations produced by the treecode. In addition, in
each system we compute the accelerations exactly on only a
subset of the bodies. Calculating the exact acceleration on
Newaer bodies in a system of N bodies requires space
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proportional to N and time proportional to NN,..... We
treated three separate test cases.

 The initial state of the 18,000 body simulation used in
Section A. Exact accelerations were computed for 4443
bodies.

« A single halo model with 54,720 bodies. This halo was
extracted from a cosmological simulation with 1.1 million
bodies reported in [23]. It is triaxial and highly concen-
trated toward the middle. Exact accelerations were
computed for 4942 bodies.

= A randomly selected subset of a very large cosmologi-
cal simulation with 8.8 million bodies. The model displays
significant clumpiness and contains approximately 100
identifiable “halos” (isolated regions of significantly
enhanced density) with more than 30 bodies. The subset
contains 32,768 bodies. Exact accelerations were computed
for 4624 bodies.

The models using the Sum Squares MAC were run with
4., set to a constant fraction, ' = 0.01, of the exact accelera-
tion (which was pre-computed by direct summation). That
is, the rms error computed using the Sum Squares MAC is
guaranteed to be less than 1% of the total acceleration on
each particle. This choice of 4,,, makes it casy to generate
meaningful statistics about the errors. Since 4,,, is a fixed
fraction of the total acceleration, we expect that the total
relative errors, i.e., the absolute errors divided by the
magnitude of the exact total acceleration, incurred by each
particle should be approximately equal (and within a smail
constant factor of f).

Figures 9 through i1 show percentiles of relative error in
the acceleration for selected bodies in the test models. The
parameters used in the opening criteria and some statistics
related to performance and accuracy are shown in Table L.

Table I and Figures 9 through 11 confirm the hope that
the Sum Square MAC outperforms the other MACs (at
least on the three test cases). The curves in the figures
corresponding to the Sum Square MAC are markedly
fiatter than the others. This implies that the errors are more
narrowly distributed, which is desirable since very small
errors on some bodies do not counteract the effect of large
errors on other bodies. Expending additional effort to
reduce a few errors is not profitable unless all the errors are
reduced equally. Furthermore, when one compares the
errors reported in TableI across the models, the Sum
Square MAC errors are much less sensitive to the model.
Setting a tolerance using the Sum Square MAC appears to
imply a certain level of overall accuracy (whether measured
by mean error, rms error, or maximum error) independent
of the distribution of bodies. In contrast, setting a value of
6 in one of the simple MACs implies an overall accuracy
that is strongly dependent on the distribution of bodies.

Finally, we note that the Sum Squares MAC was run
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FIG. 9. Percentiles of relative error in the total acceleration computed
for 4443 bodies in a two-galaxy encounter with 18,000 bodies.

using only monopole interactions, while the simple MACs
were run with quadrupole interactions. Quadrupole interac-
tions are about twice as costly as monopole interaction in
terms of CPU usage and also require about twice as much
storage.* Table I reports the quantity 2N .4 + Nemono Which
is roughly proportional to the running time under the
assumption that quadrupole interactions are twice as
expensive as monopole. With this assumption, the Sum
Squares MAC is significantly cheaper than the other MACs.
Nevertheless, it achieves marginally superior average errors
and worst-case errors that are superior by factors ranging
from three to ten.

4.6. What Value of p

It is tempting to add quadrupole terms to the Sum
Squares MAC. Table I shows results for the Sum Squares
MAC using the monopole approximation for partials. Com-
puting quadrupole terms would considerably add to the
expense in terms of both time and memory. Furthermore,
we find that adding quadrupole interactions is less cost-
effective than simply lowering the 4,,, accuracy parameter,
which has the effect of evaluating additional monopole
interactions. The reason is that computing high-order
approximations when low-order will suffice can be just as
wasteful as computing small-magnitude partials to high

4 These factors, or course, depend strongly on implementation details.
Carefully tuned assembly language for the 1860 microprocessor achieves
approximately one monopole interaction in 1.5 us and one quadrupole
interaction in 3.0 us.
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computed for 4624 bodies in a late-epoch cosmological simulation with
32,768 bodies.

absolute accuracy. Once one considers MACs that vary on
a per-particle basis, it is natural to ask if the multipole
order, p, might also vary on a per-particle, or even
per-partial, basis.

In some sense, the optimal scheme is one in which the
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computed for 4942 bodies in a single triaxial halo.
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sum in Eq.(17) is optimized not just by minimizing the
number of partials, but also by allowing different partiais
to be evaluated to different orders and assigning an
appropriate cost. This optimization problem is even harder
than the original, but an approximate solution is still
tractable.

Suppose that multipole moments have been stored with
cells in the tree up to some order p,,. When we traverse the
tree, we can still maintain a priority queue of unopened cells
keyed by the magnitude of the possibie error, but now we
also store a value of p with each unopened cell. When the
cell with the largest error is popped from the priority queue,
we check its value of p. If it is less than p_,,, then we simply
increment p, recompute the new error appropriate for the
higher order approximation and re-insert it in the queue. If
p is equal to p,..,, then we insert its children on the queue,
each with p=1. With this scheme, high order interactions
are computed only when they are useful in reducing the
total error.

We have done some limited experiments with this scheme
and p..., =2. We ran the three representative models using
the Sum Squares MAC and f = 0.01 obtaining errors that
are essentially indistinguishable from those that result from
using only monopole interactions. The average number of
interactions of various types that were computed for each
model are shown in Tabie I. Note that the vast majority of
the interactions are still monopole. The savings that can be
attributed to using quadrupole interactions is at best about
7% . This saving must be weighed against the additional
complexity involved in coding the quadrupole interaction,
as well as the memory and time required to store the
quadrupole moments themselves. Our limited experience
suggests that it is not worth the effort to store and use
quadrupole moments in conjunction with the Sum Squares
MAC. It may be, however, that an analogy with Fig. 6 is
appropriate, i.e., if much higher accuracy is required, then
the use of higher order multipoles may be cost effective.

5. CONCLUSIONS

Of the three simple MACs considered (BH, MD, Bmax),
the MD MAC appears to be optimal in the sense of best
worst-case behavior for a given amount of CPU resources.
It is superficially equivalent to the BH MAC, except that the
distance from a body to a cell is computed between the body
and the nearest face of the cell, rather than the center-of-
mass of the cell. Our analysis suggests, however, that a
disturbingly large amount of CPU resources is required to
guarantee a reasonable level of accuracy (on the order of a
few percent per interaction), no matter which simple MAC
is used.

We instead propose a series of new MACs based on a
much tighter analytic error bound derived Appendix B that
relies on two additional moments of the distribution of matter
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within a cell. This error bound may be used alone to place
strong, reliable limits on the error introduced by each multi-
pole interaction. Alternatively, it can be combined with an
alternative ordering of the tree traversal, which is itself
based on the error bound, leading to the Sum Squares
MAC, which outperforms all of the simple MACs and
guarantees a specified level of error in the total force (ie.,
the final answer) at reasonable cost. In fact, by comparison
with the p=2, # =0.65 BH MAC, the monopole-only Sum
Squares MAC achieves empirical rms errors that range from
comparable to twice as good and empirical worst-case
errors that range from three to 12 times as good. The CPU
requirements range from approximately equal to one third
less for the Sum Squares MAC. The theoretical worst-case
error for the Sum Squares MAC under consideration is 1 %,
which can be guaranteed only by p=4 multipoles and
# =0.25 using the BH MAC. Since the Sum Squares MAC
achieves this performance with only monopole interactions
it enjoys significant savings in memory, CPU time, and code
complexity, which often has dramatic non-linear effects on
modern RISC architectures.

The Sum Squares MAC allows much finer control over
the magnitudes of errors associated with individual
particles. This presents an opportunity for sophisticated
integrators to request accelerations with the errors specified
on a per-particle basis. To our knowledge, none of the
currently popular “individual timestep” integrators are so
configured, so this is a technique which remains to be
exploited. The fact that errors are bounded in absolute
rather than relative terms may also be significant for other
types of N-body simulation, notably molecular dynamics
and vortex dynamics, in which the monopole contribution
of a cell may be vanishingly small due to charge cancella-
tion, but dipole and higher terms may be significant.

The MACs presented here have been criticized because of
the possibility of introducing unphysical effects by setting
the error bound too high. We emphasize that the choice of
1% relative errors in our numerical tests is completely
arbitrary. The magnitude of the error bound, whether in
terms of relative or absolute errors, is a well-defined,
adjustable parameter of the new MACs. The user may set
the error tolerance to whatever is appropriate, either
explicitly or through a sophisticated integrator. Errors that
occur because the bound was set too high can no more be
blamed on the underlying method than can errors that
result from using a high-order integration scheme with too
large a timestep.

Finally, we observe that the idea of applying a tight,
analytic error bound is applicable to cell-cell treecodes as
well. We suspect that an adaptive cell<ell treecode using a
MAC analogous to the Sum Squares MAC will provide
superior asymptotic scaling for very large N, while still
performing well with modest N because of its ability to use
lower order multipole expansions.
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APPENDIX A: DETONATING GALAXIES

It is tempting to dismiss the analytic worst-case error
analysis of Section 3.1 as being far too pessimistic. One
might argue that the worst-case will never arise in practice.
Indeed, previous semi-empirical studies of errors in
treecodes have never reported errors even remotely
approaching those in Section 3.1. In this appendix we pre-
sent a reasonable astrophysical simulation which encounters
catastrophic errors when integrated using the conventional
BH MAC. The point of this exercise is not to imply that all
astrophysical simulations contain geometric configurations
like those presented here. Nor is it relevant that the simula-
tion presented here may abstract away crucial properties of
real galaxies. The significance is that {we think) the non-
physical detonating behavior will come as a great surprise
to those familiar with prior, semi-empirical work on errors
in tree codes [13, 14, 10]. In light of the “discovery” that
errors in real simulations can far exceed the “typical” errors
previously reported, we argue that conservative practi-
tioners of N-body simulations should rely on anaiytic
worst-case error analyses or otherwise convince themselves
that the worst-case bounds will not be approached. It is not
sufficient to convince one’s self that the particular configura-
tion discussed here does not arise in a particular simulation.
There may be other “undiscovered” configurations that also
give rise to systematically erroneous acceleration evalua-
tions with magnitude comparable to the error bounds of
Fig. 5.

~ 3

C

FIG. 12. Geometry of “Detonating Galaxy™ pathological situation for
the BH MAC criterion.
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Consider the situation in Fig. 12. A large (primary)
galaxy, P, is at the lower left corner of one of the cells, C, in
the tree. Assume that the cell is of unit size. A smaller
(secondary) galaxy, S, is partially inside the upper right
corner of C; i.e.,, some of the bodies in § are inside C and
some are outside. Each of these galaxies is a self-gravitating
collection of hundreds or thousands of individual bodies.
Unless & is very small (by the standards of normal
astrophysical practice), the internal dynamics of the
secondary can be severely disrupted by errors introduced by
the BH MAC.

Since the primary is, by construction, much heavier than
the secondary, the center-of-mass of C is near its lower left
corner. Now consider the operation of the BH MAC for a
body, X, bound to the secondary, but just outside the
boundary of C. The distance from X to the center-of-mass
of C is about \/5 in the figure, but it can clearly be as large

as /3 in three dimensions. Thus, for any value of > 1 /\/3,
the BH MAC reports that the multipole approximation is
acceptable. That is, as far as body X is concerned, any part
of the secondary that has passed inside the boundary of C
will be treated as though its mass is concentrated at the
center-of-mass of C. By artificially removing the mass of
the secondary to the far corner of C, the self-gravity of the
secondary is drastically (and incorrectly) reduced. The
quadrupole correction for cell C has the correct sign, but its
magnitude is much too small to significantly improve
matters. In a simulation, the secondary will “explode” as it
crosses the boundary of C and loses its self-gravity. If it
passes entirely into C, its dynamics return to “normal,” but
the damage has been done.

Hernquist [13] has reported on a closely related source
of error, and he suggests adding an additional test to the BH
MAC to guarantee that bodies inside cell C cannot interact
with themselves by interacting with cell C. His prescription,
however, does nothing for points like X in Fig. 12,

Systems susceptible to this source of error are not as rare
as one might hope. Consider a merger simulation with
G =1, dr=0.025, Plummer softening parameter, ¢=0.03,
and two truncated spherical Jaffe models with the
parameters shown in Table I1.° Both models are truncated
at a radius of 10r,. The simulations were carried out using
the BH MAC and oct-trees in which the root cell was a cube
of size 24.0, centered on the origin. We expect a situation
like Fig. 12 to occur near + =4.0 when the secondary passes
through the corner of the cell at x = (6, 6, 6).

Figure 13 shows the energy (7T + U) and the 10% and
50% mass radii of the secondary in the system described
above for several values of 8. The discontinuity in energy
and mass-radii at r = 4.0 is the result of the error introduced

* This is not an entirely contrived example. A very similar system was
evolved using the MD MAC (Section 2.2), and reported in Salmon
eral [241.
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FIG. 13. Total energy, T+ U and selected mass-radii vs ¢ for a simula-
tion consisting of a heavy primary and a light satellite (mass ratio, 20: 1)
on a headon orbit along the x = y =z line.

by the BH MAC. Note that a discontinuity in energy occurs
even for the extremely conservative value of 6=0.65.
Implementing Hernquist’s additional test that a body
cannot be inside a cell with which it interacts makes a sub-
stantial difference, but falls far short of actually repairing the
problem. Without Hernquist’s criterion, at §=0.7, the
secondary simply detonates near 7 = 4.0. Using Hernquist’s
criterion, the 50% mass radius jumps from 0.18 to 0.25. At
8 <0.65 the Hernquist criterion makes little difference. At
such small values of 8, it is extremely unlikely for a body to
pass the BH MAC and fail the Hernquist criterion (even for
a pathological configuration like Fig. 13.)

One might hope that by randomly moving the origin or
the size of the root of the BH tree, one could avoid the
problem. After all, the disaster strikes as a result of a
“conspiracy” between the positions of the galaxies and the
positions of the cells in the BH tree. We claim without proof
that this is not a viable solution. If the root cell moves
around, it may not be predictable when the disaster occurs,
but it is certain to occur eventually. Even one timestep with

TABLE II

Dynamical Parameters for Two-Galaxy Simulation

M X Yo r, N

Primary 1.0
Secondary 0.05

(0.3,0.3,03)
(70,70,7.0)

(0,0,0)
(=025, —-0.25, —0.25)

1.0 15,000
02 3,000
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(1] 20 40 60 a0 100

percentile

FIG. 14. Cumulative probability distribution lor relative errors in the
acceleration for three samples from the 8 = 0.7 model shown in Fig. 13. The
errors are computed as |4al/|a,,,. |, where a_,.., is computed by direct,
O(N*) summation.

acceleration errors approaching 30 % (see Fig. 14) seems to
us to be too large.

Figure 14 confirms that the errors primarily affect the
bodies in the secondary. It shows the cumulative probability
distribution for relative errors in the acceleration for three
distinct samples chosen from the #=0.7 simulation. At
t = 3.0 (well before the discontinuities in Fig. 13) the errors
appear well-behaved, with the majority of errors below
0.2 %. The situation is dramatically different at = 4.0. The
distribution is clearly bi-modal, with the majority of bodies
still subject to errors is less than 0.2%. However, about
10% of the bodies are subject to relative errors exceeding
20%. The average error is over 4%, which is roughly
consistent with the size of the discontinuity in energy shown
in Fig. 13 (about 1% ). When the sample is restricted to the
bodies in the satellite galaxy, the situation is even worse.
Almost 70% of the secondary is subject to errors greater
than 20%, and a significant fraction is subject to errors
approaching 100 %.

It is curious that the BH MAC can give rise to such large
errors when it has been tested so extensively. Indeed, very
similar physical systems have been used to verify the
accuracy of treecodes [14, 217, but the galaxies in these test
cases were of equal mass and on an orbit parallel to one of
the Cartesian axes. In this configuration, the error does not
arise, and the algorithm “passed” the test.

A number of authors have empirically measured errors
introduced by the BH MAC over a range of values of § [ 13,
16, 14, 107]. The situation here is not inconsistent with the
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previous work. It only serves to point out the danger of
relying on statistical measures of the error. The cited papers
all report rms and/or average relative errors. Even in the
worst case reported here (# =0.7, no Hernquist criterion),
the errors are negligible almost everywhere, almost always.
Simple statistical measures are not sensitive to the presence
of a rare, but catastrophic, “taii” in the distribution of
errors. Unfortunately, even though the errors are statisti-
cally rare, they are not benignly distributed. The errors here
only affect a small fraction of the bodies for only a brief time
but they do so in such a way as to significantly disrupt the
physics of the secondary galaxy.

Even if the other papers had reported maximum relative
errors, rather than rms or means, it is unlikely that they

would have had cause to warn against § = 1 /\/5. Only cer-
tain, rather special geometrical arrangements of bodies give
rise to errors of the magnitude of Figs. 13 or 14. Analysis of
systems with isolated Plummer models or pairs of equal-
mass Plummer models will not exhibit such catastrophic
behavior. Indeed, we may note that two types of mass dis-
tributions are modeled very accurately by the quadrupole
approximation: uniform distributions of mass and distribu-
tions with the mass concentrated as a single point. Thus, test
cases in which most of the matter is uniformly distributed
and/or concentrated at a single point are tailor-made for
the quadrupole approximation and will exhibit negligible
errors. It is possible that in the course of a single large
cosmological simulation two halos will interact with a
geometry similar to Fig. 12, but the number of affected
bodies will likely be very smail compared to the total. The
“glitch” in total T+ U will probably be lost in the noise, and
it would be hard to identify such an occurrence if one were
not looking for it a priori.

The two alternative MACs we propose in Section 2 are
specifically chosen to avoid the source of error illustrated in
Fig. 12. In effect, we propose MACs which disallow use of
the multipole approximation for points like X in Fig. 12.
The MD and Bmax MACs may be considered “patches” to
existing treecodes. Implementing them in an existing code
would require changing very few lines of code and would
eliminate the possibility that a significant source of error
could invalidate a simulation, While they certainly eliminate
the detonating galaxy pathology, they should still be con-
sidered a stopgap, as large errors are still possible unless 6
is made quite small (probably unacceptably so). The
methods of Section 4 are recommended as a more viable,
long term solution.

APPENDIX B: MULTIPOLE EXPANSIONS
AND ERROR BOUNDS

We restrict our attention to methods which compute only
body—cell or body-body interactions. The analysis of

151

cell-cell interactions (and hence all O(N) algorithms) is
deferred to another paper.

Consider a distribution of matter in a “cell,” ¥, and its
effect on the potential and acceleration field outside ¥". In
the specific case of the BH algorithm, the cells are cubical,
with sides of length L, L/2, L/4, etc., but for now, these facts
are irrelevant, Thus, the analysis here applics equally well to
the treecodes described in [1, 2, 7].

The potential at a point r is given by

#r) =] Glr—x) p(x) ', (19)

P

where p is the mass density of matter in the volume, and G
is the Green’s function, which we leave general for the
moment. It is noteworthy that the multipole expansion, and
hence the entire machinery of treecodes, may be formulated
for arbitrary Greens functions. It is possible to apply
treecodes to systems with entirely different Greens func-
tions, such as may arise in chemistry [25] or fluid dynamics
[26,27].

The acceleration is obtained from the gradient of the
potential:

a(ry= —Vg(r). (20)

The multipole expansion is obtained by selecting a
particular point (usually the center-of-mass of the cell), ry,
and performing a Taylor expansion of

=] Glr—r)=(x=ro) p(x) . (21)
The resulting formulae are )
P
Pry= Z ‘}5:::)(")4'4145(;;)(") (22)
n=0Q
[
a(r)= ) au(r)+da,(r) {23)
n=0
where
-1y
s ="Lar o, 6l (24)
et D
a,(r)=— (TH_ M}(ln‘)”,” 6,—1 “enin VGlr—ro' (25)

The multipole moments are defined by
M= dxlx—ro)" (x= 1) (x=ro) plx),  (26)

or, in the case of a collection of point masses m, at positions
xq 2

‘Al?nhjnikr e Z m:t(xz - rﬂ}il ('xat - rO)i2 o (xa: - r[))j"' (27)

o€
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The multipole moments represent the distribution of mass
within the ceil and are independent of the point, r, at which
the potential or acceleration is computed. The error terms
are

A¢:p)(r)=J dx K,)(r, X) plx) (28)
A8, (1) = [ d’xV,K,,(r, x) p(x), (29)
.
where
(_1)p+1 i 1,
Kir,x)= P! (-Y—fo)""(x_ro)””
1
X[ =118, Gl (30)
0

With a particular Greens function in mind, it is possibie
to explicitly evaluate the derivatives and summations that
appear in the above equations. For Newtonijan gravity, the
Greens function is

Gr)= —1/|r|. (31)

The singularity at the origin of the Newtonian potential
can lead to difficulties with time integration, so it is common
to replace the Newtonian potential with the Plummer
potential, which lacks the singularity:

G(r)= —1/(r* +¢2)'2, (32)

Another alternative is to replace the Newtonian potential
with a spline-softened potential [197. Care must be taken
when applying the multipole approximation to a spline-
softened potential because the Taylor series which underlies
the multipole expansion has a limited radius of convergence
near the points where the spline function changes form.
Lacking a very careful analysis, it is probably best to use
direct summation whenever there is the possibility that an
interaction may be spline-softened. This is easily accom-
plished by inserting a simple comparison into the MAC,

We treat the more general Plummer case first. It is con-
venient to introduce some notation. Define the “Plummer
distance,” R,

R=((r—ry)? +¢2)¥2, (33)
the “pseudo-unit vector,” h,
h=" ;ro, (34)
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and the “traced inner product,”

<M(n) l 5(R'Jh[m)>f2.'+m+l ]

z ;'1‘..;‘ - .
=M " 6*‘112 5fzt—|izrhizf+l h

(n) (35)

2t em®

Then Egs. (24) and (25), with the Plummer potential,
become

L "2 (1) 2n—2m— 1)1

Puntr) = TR B m!2™(n—2my)!
X (M )| 6= 2m (36)
and
L &2 (=1y" 2n—2m— 1)1
M= L ]
X ((2n—2m + 1) M| §htn—2m)y |
(1 =2m) M, 18Ry (37

For reference, the summations are expanded and the
combinatoric factors are evaluated for the first few values
of n:
$0y=—R M,
biuy=—R2(M,,) | 500D,
$y=~R7IB M, [6 Oy (M 5)|60ny),
$3y = —RTG(15{M 3| 6O =9 M 5| 6B DY),
Py = —R’5§(105<M(4,]5‘°’h‘4’> =904 M 4| VAP
+9CM ) [ 3DRy), (38)
)= —R"*M)h,
a0)=—R(3(M )| 8Oy h— (M) |6 Ph @),
a,, = —R“‘%(lS(Mu,fé‘”’h‘z’) h—6{M ) 60p0y
=3 M 3){6Vh @) h),
a5,=—R° é(lOS(Mﬂ]lé(O’h‘”) h—45(M ;)| 3DR2
— 45 M 5[ DpDy h+9¢M ;|8 0Ry),
a,=—RS 37 (945( M 4, [ 8ORD S
—420{ M 4| 6OVRY
—630{ M, |8"VR S b+ 180 M (4| 8™h11Y

+A45(M (4, | 8PhDY h). (39)

It is possible to set ¢ equal to zero in the above formula
and obtain correct results for the Newtonian potential.

However, an additional simplification is applicable when-
ever the Green’s function is harmonic, ie., a solution of
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Laplace’s equation. Since derivatives may be taken in any
order, we have
38, 0, 0,G(r)=0; r#0;

a, f<n  (40)

We define

Q(H)EM(H)—(S@CU:*M: (41)

where C,, is any fully symmetric rank » tensor whatsoever,
and the operator & means a symmetrized outer product,
ie.,

((5®AM))1‘|---:‘M:=5r'u'zAr;3"-,--in+z+

S ——

(42)

(" ; 2) combinatians

Because of Eq. (40), the Kronecker delta that appears in
Eq. (41) vanishes when contracted with the derivatives of G.
Thus, from Eq. (24), (25), (40), and (41),

(=1 i

¢(ﬂ)= n! {l'!)” " f[“'al”Glrfrns (43)

(—l)n il.,.fna

(r) ]

A= — VG| (44)

n! T—r"

Since C,, is arbitrary, we may choose it so that Q,,,,, the
“reduced multipole tensor,” is completely trace-free, on any
pair of indices, ie.,

sy @ony " =0 (45)

Then all but the leading (i.e., m =0) terms in Egs. (36) and
(37) vanish, and we have

2n—1)31 1
¢l")(r)= f(_n'?)_dn+1 <Q(n)|eml>a (46)
-1 1 .
3= = 2R (n 4 1< €7
—ndQmie" ") (47)

where d is the distance |r — 1| and & is the unit-vector in the
direction r —rg.

Since M, is symmetric under the interchange of indices
and Eq. (41) is manifestly symmetric by construction, Q' is
a completely trace-free symmetric tensor of rank #. The
following recursion relation {which follows [rom taking the
trace of both sides of Eq. (41)) allows one to construct Om
from M, and its traces,
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gE = SLIM (48)
1
(m}=5(MJM _ S (m+1)
(r) (m) {m ¥ 1)(2” — 2m— 1) ®Q(n) ’ (49)
(30)

Q= (0)
(n) (n}*

where 8'™'M,,, means m pOwers of the Kronecker delta
contracted with the tensor M, or equivalently, the m-foid
trace of M ;.
For reference, the first few tensors @, aré
Qioy =M,
Qmy=Muy,
Qi=Mp— %5®‘5M(2)’
QU):M(B)_%‘S@éM(Sl'
Q=M — 0@ (OM 4~ L@ (6VM 1),
Q(S) = M(S) - %5 ® (5M(5) — ﬁé ® (5(2)M(51),
Q) =M — 10 @ (6M g
- 11_85 ® [5(2)M(6) - 5175® (6(3}M(6)))'

(51)

B.1. The Error Terms

The error term associated with the Plummer potential is
expressible in terms of elementary functions and integrals
[11] but the precise form is unwidely and not terribly
useful. The error derived from a Newtonian potential is
somewhat more manageable. We assume, without loss of
generality, that the center-of-mass, To, is at the origin, Then

1 1 p+2
Kyt —(Z) e ()

X (1= 1) Py 1l,) i, (52)

where P, is the Legendre polynomial of degree n, unit-
vectors are denoted ¥ =v/|v|, and

o= |x|/r,
r,=r—IXx, (53)
Uy =i-r X

The gradient of K, is given by

1 1 A\

VK, r. ) =527 o+ 1) | artr-7 (%)
X ((P + 2) Pp+ 1(#1) fl_ (ﬁ i nuli'r) P:p+ l(.ur))-
(54)
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We can use the following inequalities to place upper bounds
on the magnitudes of K, and its gradient,

r 1
Sl—wt
P <1 for <1
12, (1)l i (55)
(n+ 1P P (u) + (1 —p?) Prp)* < (n+1)?
for |u| <1,
from which we conclude that
EI‘D+1
|Kip(r, x)| <~ 17— (56)
1 1
[V K, (r, x)| < zﬁ(p+2*a(1)+1)}- (57)
Using Eq. (57) we obtain
1 3 ] p+1
dar) < [ 4%l s (p+2)
—(p+1)ar*?), (58)

Returning to the general case, where d=|r —r,|, and using
the fact that

%S Doy /4, (59)
we obtain
B (< S
a(p)(r (1_ max/d)2
B y:
(042 (2250) - (4 1) (5252))
(60}

where the moments

Buy=] dx|p(x)l [x—=rol" =3 Ims| Ixs—ro|”  (61)
B

depend solely on the distribution of matter in ¥". Note that
these expressions hold even in systems where the “mass-
density,” p(x), is allowed to be negative. Such systems, of
course, do not arise in gravitational problems, but they are
common in molecular-dynamics simulations with charged
species.
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B.2. Bounds on B

(n)

It is straightforward for a treecode to compute exact
values of B, as needed by direct summation over all bodies
within a cell. However, for large cells with many bodies this
procedure can be costly. In this section we derive upper and
lower bounds on B, which can be used in lieu of direct
summation. Note, however, that these additional bounds do
rely on the non-negativity of the density field. In order to
use these bounds in, e.g., molecular dynamics with charged
species, it would be necessary to retain not only multipole
moments of the charge distribution, ¢, but also the multi-
pole moments of the absolute value of the charge distribu-
tion, |gq,|. Once B, ,and B, ,, are found, the storage for
the absolute value multipoles is no longer needed and could
be returned to the operating system. The latter is used to
construct B,,,, while the former is used to compute fields
and gradients. In terms of upper and lower bounds on B,
we have

1 1
A1 G (1 b fd)?
x((ﬁz)(rﬁﬁ:n)_( H}(Laiiu))_

(62)

Even moments may be computed exactly from traces of
the unreduced multipole tensors:
/2
By, =0"""M,,

even n. (63)

Furthermore, if the maximum extent b_,, is known (or
bounded), then upper bounds may be placed on high-order
moments by

B(n +k) ""<~ b

B(u)' (64]

max

The following formulas, which follow from Holder's
inequality [28] are useful for even and odd p, respectively:

B%P) (5(”2)M(PJ}2

B,z == (65)
p+ B[p—Z) Jur 2)/2)M(p_2)
BZ Bsﬂ—l)_(6“‘0_1)/2]M[P—1])5 (66)
2)Z = :
R B?P 3) (5”’] 3}/2)M(P— 3))3

The particular case of p=1 deserves special considera-
tion. For this case, simple expressions involving only B,
and b, do not afford sufficiently tight bounds on the B,
and B, ,;, moments. Thus, we recommend accumulating the
diagonal elements of the M ,, moment exactly, even though
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M ,, will not be used in the muitipole approximation, and
using the following alternative bounds for B,,, and B;,:

B, =0M,, (67)
3 3
g o M) (68)
Bq M,

B.3. Weak Bounds

Equation (62) tells us the maximum possible error in
terms of the moments B,,,. Existing treecodes, however,
do not record values (or estimates) of B,,,. Lacking any
knowledge of B,,, we can still obtain a weak bound using
Eq. (59) and the fact that Eq.(56) and Eq.(57) are
monotonically increasing functions of «:

B(O] 1 bmax rl
__.<\__.._.__
i<y 1 —bo,/d\ d

B 1
d2 (1 - bmax/d)2

bmﬂx P+1 {)ﬂ

The first term may be identified with the monopole interac-
tion in the case of a non-negative p field. The maximum
relative error is thus a monotonically increasing function of
boax/d, which is useful primarily for motivating the
Bmax MAC.

Equation (69) is similar to results obtained by Greengard
[4], where it is used to select a suitable multipole order, p.
Note, however, that the reltive error in the acceleration is
considerably larger than the relative error in the potential.
Thus, if one bounds the potential with order p multipoles,
the error in the acceleration may be almost p times as large,
which can amount to an order of magnitude or more in
practice.

(69)

Aa(p,(r)g
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