A Paralel Hashed Oct-Tree N-Body Algorithm*

Technical Paper Submitted to Proceedings of Supercomputing 93

Michadl S. Warrenf
Theoretical Astrophysics
Mail Stop B288
Los Alamos National Laboratory
LosAlamos, NM 87545

John K. Salmon
Physics Department
206-49
Cdlifornia Institute of Technology
Pasadena, CA 91125

March 31, 1993

Abstract

We report on an efficient adaptive N-body method which
we have recently designed and implemented. The algo-
rithm computes the forces on an arbitrary distribution of
bodiesin a time which scalesas NV log IV with the particle
number. The accuracy of the force calculations is ana-
Iytically bounded, and can be adjusted via a user defined
parameter between a few percent relative accuracy, down
to machine arithmetic accuracy. Instead of using pointers
toindicatethetopology of thetree, weidentify each possible
cell with akey. The mapping of keysinto memory locations
is achieved via a hash table. This allows the program to
access data in an efficient manner across multiple proces-
sors. Performance of the parallel programis measured on
the 512 processor Intel Touchstone Delta system. We also
comment on a number of wide-ranging applications which
can benefit from application of this type of algorithm.

1 Introduction

N-body simulations have become a fundamental tool in
the study of complex physical systems. Starting from a
basic physical interaction (e.g., gravitational, Coulombic,
Biot-Savart, van der Waals) one can follow the dynamical
evolution of a system of N bodies, which represent the
phase-space density distribution of the system. N-body
simulations are essentially statistical in nature (unless the
physical system can bedirectly modeled by IV bodies, asis
the case in some molecular dynamics simulations). More
bodies implies a more accurate and complete sampling of
the phase space, and hence more accurate or complete re-
sults. Unfortunately, the minimum accuracy required to

*LAUR 93-1224
t Department of Physics, University of California, Santa Barbara

model systems of interest often depends on having N be
much larger than current computational resources allow.

Because interactions occur between each pair of parti-
clesin aN-body simulation, the computational work scales
asymptotically as N2. Much effort has been expended
to reduce the computational complexity of such simula-
tions, while retaining acceptable accuracy. One approach
is to interpolate the field from a lattice with resolution A,
where it can be computed in time O(h~3) (using multi-
grid) or O(h—2logh~3) (using Fourier transforms). The
N-dependence of thetime complexity then becomes O (V).
The drawback to this method is that dynamics on scales
comparable to or smaller than A cannot be modeled. In
three dimensions, this restricts the dynamic rangein length
to about onepart in ahundred (or perhapsonepart in athou-
sand on a parallel supercomputer), which isinsufficient for
many calculations.

Another approach is to divide the the interactions into
“near” and “far” sets. The forces due to distant particles
can then be updated less frequently, or their forces can
be ignored completely if one decides the effects of distant
particles are negligible. However, this risks significant
errors which are hard to analyze. Also, any significant
clustering in the system will reduce the efficiency of the
method, since alarge fraction of the particles end up being
ina“near” set.

Over the past several years, a number of methods have
been introduced which allow N-body simulationsto be per-
formed on arbitrary collections of bodiesin time much less
than O(IN'2), without imposition of alattice. They all have
in common the use of a truncated expansion (e.g., Taylor
expansion, Legendre expansion, Poisson expansion) to ap-
proximate the contribution of many bodies with a single
interaction. The resulting complexity is usually cited as
O(N) orO(N log N), but acareful analysisof what depen-
dent variables should be held constant (e.g., constant per-

timestep error, constant integrated error, constant memory,
constant relative error with respect to discreteness noise)
often leads to different conclusions about the scaling. In
any event, the scaling is a tremendous improvement over
O(N?) and the methods allow accurate computations with
vastly larger N.

The basic idea of an N-body algorithm based on a trun-
cated series approximation is to partition an arbitrary col-
lection of bodies in such a manner that the series approx-
imation can be applied to the pieces, while maintaining
sufficient accuracy in the force (or other quantity of inter-
est) on each particle. In general, the methods represent a
system of N bodies? in a hierarchical manner by the use of
aspatial tree data structure. Aggregationsof bodies at var-
ious levels of detail form the internal nodes of the tree, and
are called cells. Generaly, the expansions have a limited
domain of convergence, and even where the infinite expan-
sion converges, the truncated expansion introduces errors
of some magnitude. Making a good choice of which cells
to interact with, and which to reject as being too inaccurate
is critical to the success of these algorithms. The decision
iscontrolled by afunction whichwe shall call the multipole
acceptance criterion (MAC). Some of the multipole meth-
ods which have been described in the literature are briefly
reviewed in the next section.

2 Background

2.1 Multipole Methods

Appel wasthefirst tointroduceamultipolemethod [1]. Ap-
pel’s method uses a binary tree data structure whose leaves
are bodies, and internal nodes represent roughly spherical
cells. Some careis taken to construct a“ good” set of cells
which minimize the higher order multipole moments of the
cells. The MAC is based on the size of interacting cells.
The method was originally thought to be O(N log V), but
has more recently been shownto be O(N) [2].

The Barnes-Hut (BH) algorithm [3] uses aregular, hier-
archical cubical subdivision of space (an oct-tree in three
dimensions). A two-dimensional illustration of such atree
(a quad-tree) is show in Fig. 1. Construction of BH trees
is much faster than construction of Appel trees. In the BH
algorithm, the MAC is controlled by a parameter 6, which
requiresthat the cell size, s, divided by the distancefrom a
particle to the cell center-of-mass be less than 8 (which is
usualy in the range of 0.6-1.0). Cell-cell interactions are
not computed, and the method scalesas V log N.

1We refer to both bodies and particles, which should both be under-
stood to be general “atomic” objects which may refer to a mass element,
charge, vortex element, panel, or other quantity subject to a multipole
approximation.

R
R

AT
i

a3

)
i
P

am

H
s B W
A T
i

R

TR TR T

S

S Es s s M

ol

il
PH

Y
i%: §

Ty

Figure 1. A representation of a regular tree structure in
two dimensions (a quad-tree) which contains 10 thousand
particles which are centrally clustered.

The fast multipole method (FMM) of Greengard &
Rokhlin [4] has achieved the greatest popularity in the
broader population of applied mathematicians and compu-
tational scientists. It uses high order multipole expansions
and interacts fixed sets of cellswhich fulfill the criterion of
being “well-separated.” In two dimensions, when used on
systems which are not excessively clustered, the FMM is
very efficient. It has beenimplemented on parallel comput-
ers[5, 6]. Thecrossover point (the value of IV at which the
algorithm becomes faster than a direct N2 method) with
a stringent accuracy is as low as a few hundred particles.
On the other hand, implementations of the FMM in three
dimensions have not performed as well. Schmidt and Lee
have implemented the algorithm in three dimensions, and
find a crossover point of about 70 thousand particles [7].
The reason is that the work in the most computationally
intensive step scales as p? in two dimensions, and p* in
three dimensions. The major advantage of the FMM over
the methods such as that of Barnes & Hut is that the FMM
has a well defined worst case error bound. However, this
deficiency has been remedied, asis shownin the following
section.

2.2 Analytic Error Bounds

Recently, Salmon & Warren haveanalyzedthe performance
of the Barnes-Hut algorithm, and have shown that the worst
case errors can be quite large (in fact, unbounded) for com-
monly used values of the opening criterion, # [8]. Salmon

& Warren have developed a different method for deciding
which cellsto interact with. By using moments of the mass
or charge distribution within each cell, the method achieves
far better worst case error behavior, and somewhat better
mean error behavior, for the sameamount of computational
resources.

In addition, the analysis provides a strict error bound
which can be applied to any fast multipole method. This
error bound is superior to those used previously because
it makes use of information about the bodies contained
within a cell. This information takes the form of eas-
ily computed moments of the mass or charge distribution
(strength) withinthecell. Computing thisinformation takes
placeinthetree construction stage, and takesvery littletime
compared with the later phases of the algorithm. The exact
form of the error bound is:

The moments, B,y are defined as:

Bla = /v B |p(@)| | — 7ol = 3 Il |25 — ol
B

@)
The scalar d = |7 — 7| is the distance from the particle
position 7 to the center of the multipole expansion, p is
the largest term in the multipole expansion, and b,,,q. IS
the maximal distance of particles from the center of the
cell. (see Fig. 2). This equation is essentialy a precise
statement of several common-senseideas. Interactions are
more accurate when:

e Theinteraction distanceis larger (larger d).
e Thecell issmaller (smaller bpaz).

¢ Moretermsinthemultipole expansion areused (larger
D).

Thetruncated multipole momentsare smaller (smaller
Bp11)):

Having a per-interaction error bound is an overwhelm-
ing advantage when compared to existing multipole accep-
tance criteria, which assume a worst-case arrangement of
bodies within a cell when bounding the interaction error.
The reason is that the worst-case interaction error of an
arbitrary strength distribution is usually many times larger
than the error bound on a particular strength distribution.
This causes an algorithm which knows nothing about the
strength distribution inside a cell to provide too much ac-
curacy for most multipole interactions. This accuracy is

Figure 2: An illustration of the relevant distances used in
the error bound equation.

wasted, however, because of the few multipole interaction
errors which do approach the worst-case error bound that
areaddedinto and pollutethefinal result. A data-dependent
per-interaction error bound is much less proneto this prob-
lem, since the resulting error bound is much tighter, even
though the actua error in the computation is exactly the
same.

The implementation of an algorithm using a fixed per-
interaction error bound poses little difficulty. One may
simply solvefor r. in,

AC”(p) (Tc) S Ainteraction’ (3)

where A;pieraction 1S @ User-specified absolute error toler-
ance. Then, r. defines the smallest interaction distance
allowed for each cell in the system. For the caseof p = 1,
the critical radius can be analytically derived from Eq. 1 if
we use the fact that Bz > O:

bmaz b2 3‘B2
c 2> a2 1/ . 4
fe < 2 +\/ 4 + Ainteraction ()

B, is simply the trace of the quadrupole moment ten-
sor. In more general cases (using a better bound on Bg,
or with p > 1), ». can be computed from the error bound
equation (Eg. 1) using Newton’s method. The overall com-
putational expense of calculating r. issmall, sinceit need
only be calculated once for each cell. Furthermore, New-
ton’s method need not be iterated to high accuracy. The
MAC then becomesd > r. for each displacement d and
critical radius r. (Fig. 3). This is computationally very
similar to the Barnes-Hut opening criterion, where instead
of using afixed box size, s, we use the distancer.., derived
from the contents of the cell and the error tolerance. Thus,

our data dependent MAC may replacethe MAC in existing
algorithms with minimal additional coding.

Figure 3: Each cell hasits own critical radius. The critical
radii of a cell and one of its daughters are shown here
as circles. For the specified accuracy, a particle must lie
outsidethecritical radiusof acell. Theshaded region shows
the spatial domain of all particles which would interact
with the lower left daughter cell. Those particles outside
the shaded region would interact with the parent cell, and
those within the unshaded region would interact with even
smaller cellsinside the daughter cell.

3 Computational Approach

Parallel treecodesfor distributed memory machinesare dis-
cussed in [9, 10], and their application to the analysis of
galaxy formation may be foundin [11, 12]. Further analy-
sis and extensions of the computational methods may be
found in [13, 14, 15]. The MAC described above is prob-
lematical for these previous methods because the parallel
algorithm requires determination of locally essential data
before the tree traversal begins. With the data-dependent
MAC it is difficult to pre-determine which non-local cells
arerequired in advance of the traversal stage. The problem
becomes particularly acute if one wishes to impose error
tolerances which vary from particle to particle.

Itisfor this reason that the algorithm described here was
developed. It does not rely on the ability to identify a pri-
ori locally essential data; instead it provides a mechanism
to retrieve non-local data as it is needed during the tree
traversal. The decisionto abandon our previous parallel N-

body algorithm was al so motivated by the desireto produce
a more “friendly” code, with which a variety of research
could be performed in computational science as well as
physics. The old code, which was the result of porting
a previously existing sequential algorithm, was a maze of
complications, brought about by the haphazard addition of
piecesover several years. Wetook full advantage of the op-
portunity to start over with a clean slate, with the additional
benefit of several years of hindsight and experience.

When one considerswhat additional operations are nec-
essary when dealing with a tree structure distributed over
many processors, it is clear that retrieval of particular cells
required by one processor from ancther is a very common
operation. When using a conventional tree structure, the
pointersin aparent cell in one processor must be somehow
translated into avalid reference to daughter cellsin another
processor. Thisrequired translation led usto the conclusion
that pointersare not the proper way to represent adistributed
tree data structure (at | east without significant hardware and
operating system support for such operations).

Instead of using pointers to describe the topology of a
tree, we use keys and a hash table. We begin by identifying
each possible cell with a key. By performing simple bit
arithmetic on a key, we are able to produce the keys of
daughter or parent cells. The tree topology is represented
implicitly in the mapping of the cell spatial locations and
levelsinto the keys. The translation of keysinto memory
locationswhere cell datais storedis achieved viahashtable
lookup. Thus, given a key, the corresponding data can be
rapidly retrieved. This scheme also provides a uniform
addressing mechanism to retrieve data which is in another
processor. This is the basis of the hashed oct-tree (HOT)
method.

3.1 Key construction and the Hashing Func-
tion

We define a key as the result of a map of d floating point
numbers (body coordinatesin d-dimensional space) into a
single set of hits (which is most conveniently represented
as a vector of integers). The mapping function consists
of translating the floating point numbersinto integers, and
then interleaving the bits of the d integersinto asingle key
(Fig. 4). Notethat we place no restriction on the dimension
of the space, although we are physically motivated to pay
particular attention to the case of d = 3. In this case, the
key derived from 3 single precision floating point numbers
fits nicely into a single 64 bit integer or a pair of 32 bit
integers.

Apart from the trivial choice of origin and coordinate
system, thisis identical to Morton ordering (also called Z
or N ordering, see Chapter 1 of [16] and referencestherein,

binary coordinate representation

X y z
10011001 01101001 11101100

placeholder hit o

/ bit interleave

1.101.011.011.100.111.001.000.110 binary key

0153347106 octal key

Figure 4: An illustration of the key mapping. Bits of
the coordinates are interleaved and a place-holder bit is
prepended to the most significant bit. In this example, the
8-hit z, y and z values are mapped to a 25-hit key.

and also[17]). Thisfunction maps each body in the system
to a unique key. We also wish to represent nodes of the
tree using this same type of key. In order to distinguish the
higher level internal nodes of the tree from the lowest level
body nodes, we prepend an additional 1-bit to the most
significant bit of every key (the place-holder bit). We may
then represent all higher level nodesin the tree in the same
key space. Without the place-holder bit, there would be
an ambiguity amongst keyswhose most significant bits are
all zeroes. The root node is represented by the key 1. A
two-dimensional representation of such atree is shown in
Fig. 5.

In general, each key correspondsto some compositedata
describing the physical datainside the domain of acell (the
mass and center-of-mass coordinates, for example). To
map the key to the memory location holding this data, a
hash table is used. A table with a length much smaller
than the possible number of keys is used, with a hashing
function to map the k-bit key to the h-bit long hash address.
We use a very simple hashing function, which is to AND
the key with the bit-mask 2% — 1, which selects the least
significant h bits.

Collisions in the hash table are resolved via alinked list
(chaining) [18]. Theincidence of collisions could degrade
performance a great deal. Our hashing scheme uses the
simplest possiblefunction; aoneinstruction AND. However,
it isreally the map of floating point coordinatesinto the key
that performs what one usually would consider “hashing.”
The structure of the hierarchical key space and selection of
theleast significant bits of the key performs extraordinarily
well in reducing the incidence of collisions. For the set of
all keys which contain fewer significant bits than the hash
mask, the hashing function is “perfect” This set of keys
represents the upper levels of the tree, which tend to be

110 /\/ 111

100 \ 101
A

11010 11011 11110 11111
110(/10 11001 11100 11101

10010 1 Ci 10110 10111
10000 10001 /7, 10100 10101

—_ H
1100110 ==

Panrd

7=
1011010 B
~—1010101

Figure 5. A gquad-tree shown along with the binary key
coordinates of the nodes. At the bottom is a “flat” repre-
sentation of the tree topology induced by the 20 particles.
The rest of the figure demonstrates the relation of the key
coordinates at each level to the tree topology. Many of the
links from parent to daughter cells are omitted for clarity.

accessed the most often. At lower levels of the tree (where
the number of bitsin a key exceedsthe length of the hash
mask), distinct keys can result in the same hash address (a
collision). However, the map of coordinates into the keys
keepsthesekeys spatially separated. Onaparallel machine,
many of the keyswhich would resultsin collisions become
distributed to different processors.

The key spaceis very convenient for tree traversals. In
order to find daughter nodes, the parent key is left-shifted
by d bits, and the result is added (or equivalently OR ed) to
daughter numbersfrom 0to 2¢ — 1. Also, the key retrieval
mechanism is much more flexible in terms of the kinds of
accesseswhich are allowed. If we wish to find a particular
node of a tree in which pointers are used to traverse the
tree, we must start at the root of the tree, and traverse
until we find the desired node (which takes of order log v
operations). On the other hand, a key provides immediate
(O(1)) accessto any object in the tree.

An entry in the hash table (an hcel |) consists of a
pointer to the cell or body data, a pointer to a linked list
which resolves collisions, the key, and various flags which
describe properties of the heell and its corresponding cell.
In order to optimize certain tree traversal operations, we
also storein each hcell 24 bitsthat describewhich daughters
of thecell actually exist. Thisredundantinformation allows
us to avoid using hash-table lookup functionsto search for

cells which don't exist. The data structure is detailed in
Fig. 6.

Hash Table hcells

key

cell pointer x

next heell z

key

cell pointer

t hoell . y
e collision heells .

key

L o key

cell pointer

cell pointer X

next heell y

next heell z
key
cell pointer
key mass

next heell

cell pointer y

next heell

Figure 6: An illustration of the data structures used in the
hashed tree. This showsthe fixed number (2*) of hcel | s
in the hash table, the extra hcells created to resolve col-
lisions, and the cel | s which contain the physical data
derived from the particles within the cell.

The use of a hash table offers several important advan-
tages. Firdt, the access to data takes place in a manner
which is easily generalized to a global accessing scheme
implementable on a message passing architecture. That is,
non-local data may be accessed by requesting akey, which
isauniform addressing scheme, regardl ess of which proces-
sor the data is contained within. Thistype of addressing is
not possible with normal pointers on a distributed memory
machine. We can also use the hash table to implement var-
ious mechanism for caching non-local dataand improving
memory system performance, asis describedin § 3.7.

3.2 TreeConstruction

The higher level nodes in the tree can be constructed in a
variety of ways. The simplest is analogous to that which
wasdescribedin[3]. Eachparticleisloadedintothetree by
starting at the root, and traversing the partially constructed
tree. When two particles fall within the same leaf node,
the leaf is converted to acell which is entered into the hash
table, and new leaves are constructed one level deeper in
the tree to hold each of the particles. Thistakes O(log V)
steps per particle insertion. After the topology of the tree

hasbeen constructed, the contents (mass, charge, moments,
etc.) of each cell may be initialized by a post-order tree
traversal.

A faster method is possible by taking advantage of the
spatial ordering implied in the key map. We first sort the
body keys, and then consider the bodiesin thislist in order.
Asbodies are inserted into the tree, we start the traversal at
thelocation of thelast node created (rather than at the root).
With this scheme, the average body insertion requires O(1)
time. Wesitill require O(IV log V) timeto sort thelist inthe
first place, but keeping the body list sorted will facilitate our
parallel datadecomposition aswell. Furthermore, it is also
usually the case that numerous tree constructionswill take
place in the course of asimulation. Since the positions of
the bodiesin the key space typically do not change a great
deal between timesteps, one can take advantage of a more
efficient O(IV) insertion sort [18], of the almost-sorted data
after the first timestep.

3.3 Paralld Data Decomposition

The parallel data decomposition is critical to the perfor-
mance of a parallel algorithm. A method which may be
conceptually simple and easy to program may result in
load imbalance which is unacceptable. A method which
attempts to balance the work precisely may take so long
that performance of the overall application suffers.

We have implemented a method which can rapidly do-
main decompose a d-dimensional set of particles into load
balanced spatial groupswhich represent the domain of each
processor. We take advantage of the properties of the map-
ping of spatial coordinates to keys to produce a “good”
domain decomposition. The ideais to simply cut the one-
dimensional list of sorted body key ordinates (see Fig. 7)
into IV, (number of processors) equal pieces, weighted by
the amount of work corresponding to each body. The work
for each body isreadily approximated by counting the num-
ber of interactionsthe body wasinvolved in onthe previous
timestep. This results in a spatially adaptive decomposi-
tion, which gives each processor an equal amount of work.
Additionally, the method keeps particles spatially grouped,
which is very important for the efficiency of the traver-
sal stage of the algorithm, since the amount of non-local
data needed is roughly proportional to the surface area of
the processor domain. An illustration of this method on a
two-dimensional set of particlesisillustrated in Fig. 9 for
a highly clustered set of particles (that which was shown
in Fig. 1) with N, = 16. One source of inefficiency in
the Morton ordered decomposition is that a processor do-
main can span one of the spatial discontinuities. A possible
solution is to use Peano-Hilbert ordering for the domain
decomposition, which is shownin Fig. 8.

N\ C -
SO SN
~ < | N
— N L
DN TN
B N A N
~ < | QT
SRS WD

Figure 7: The path indicates the one-dimensional sym-
metric self-similar path which is induced by the map of
interleaved bits (Morton order). The domain decomposi-
tion is achieved by cutting the one-dimensional list into IV,,
pieces.

3.4 Paralld Tree Construction

After the domain decomposition, each processor hasa dis-
joint set of bodies. Theinitial stagein parallel tree building
is the construction of a tree made of the local bodies. A
special case occurs at each processor boundary in the one-
dimensional sorted key list, where the terminal bodiesfrom
adjacent processorscould liein the samecell. Thisistaken
care of by sending a copy of each boundary body to the
adjacent processor, which alows the construction of the
proper tree nodes. Then, copies of branch nodes from
each processor are shared among all processors. Thisstage
is made considerably easier and faster since the domain
decomposition is intimately related to the tree topology
(unlike the orthogonal recursive bisection method used in
our previouscode[10]). The branchesmake up acomplete
set of cells which represent the entire processor domain
at the coarsest level possible. These branch cells are then
globally communicated among the processors. All proces-
sors can then “fill in” the missing top of the tree down to
the branch cells. The address of the processor which owns
each branch cell is passed to the destination processor, so
the hcell created is marked with its origin. A traversal
routine can then immediately determine which processor
to request data from when it needs access to the daugh-
ters of a branch cell. The daughters received from other
processors are also marked in the same fashion. We have

-

ey,
o D

SR>,
(M M

=
_J

T (T
L D LMD

Figure 8: A non-symmetric path that does not contain dis-
continuities (Peano-Hilbert order) which should produce a

better decomposition, but which has not been implemented
yet.

also tried implementing the branch communication step
in a more computationally clever manner which does not
globally concatenate the branches, but its complexity has
tended to outweigh its benefit. This does not rule out the
possibility of finding a better method for this stage of the
algorithm, however.

35 TreeTraversal

A tree traversal routine may be cast in recursive form in a
very few lines of C code;

Traverse(Key_t key, int (*MAC) (hcell *),
void (*postf)(hcell *))
{

hcel | *pp;
unsigned i nt child;

if ((pp=Find(key)) && MAC(pp)) return;

key = KeyLshift(key, NDI'M;

for (child = 0; child < (1<<NDI M ; chil d++)
Traverse(KeyOrlnt(key, child), MAC, postf);

postf(pp);

Thiscode appliesanarbitrary MAC to determinewhether
to continue traversing the children of a cell. If the children
aretraversed, than another function, post f , iscalled upon
completion of the descendants. By appropriate choice of
the MAC and post f one can execute pre-order or post-

Figure 9: A processor domain for one of 16 processors
in a data decomposition for the clustered system of bodies
shown in Fig. 1. The domain shown is a result of the
decomposition strategy outlined in the text.

order traversalswith or without complex pruning strategies
(i.e., multipole acceptability criteria).

On aparallel machine, one may add additional function-
ality to the Fi nd function, in order to handle caseswhere
the requested node is in the memory of another proces-
sor. The additional code would request non-local data,
wait to receive it, and insert it into the tree. This alows
the same traversal code fragment to work without further
modification on adistributed memory computer. However,
the performance of such an approach is bound to be dis-
mal. Each request of non-local data is subject to the full
interprocessor communication latency. Computation stalls
while waiting for the requested data to arrive.

It is possible to recast the traversal function in a form
which allowsthe entire context of the traversal to be stored.
In this case, when a request for non-local datais encoun-
tered, the request is buffered, and the computation may
proceed. Almost all of the latency for non-local data re-
guests may be hidden, by trading communication latency
for a smaller amount of complexity overhead.

The traversal method we have chosen is breadth-first list
based scheme. It does not use recursion, and has severa
useful properties. We shall discuss the plain sequentia
method first, and then show the additions to allow efficient
traversals on a parallel machine.

Theinput to the list-based traversal isawalk list of hcell
nodes. On thefirst pass, thewalk list contains only the root
hcell. Each daughter of the input walk list nodes is tested

against the MAC. If it passesthe MAC, the corresponding
cell data is placed on the interaction list. If a daughter
fails the MAC, it is placed on the output walk list. After
the entire input list is processed the output walk list is
copied to thewalk list and the processiterates. The process
terminates when there are no nodes remaining on the walk
list. Thismethod hasan advantageover arecursivetraversal
in that there is an opportunity to do some vectorization of
the intermediate traversal steps, since there are generally a
fair number of nodes which are being tested at atime. It
also results in a final interaction list which can be passed
to afully vectorized force calculation routine. The details
are too intricate to allow us to present real C code, so we
present the algorithm in pseudocodeinstead:

Li st Traverse((*MAC) (hcel I *))
{

copy root to wal k_list;
while (!Empty(walk_list)) {
for (each itemon walk_list) {
for (each daughter of item {
if (MAC(daughter))
copy daughter to interact_list;
el se
copy daughter to output_wal k_list;
}

wal k_l'i st = output_wal k_|ist;
}
}

When the traversal is complete, thei nt eract | i st
contains a vector of items that must undergo interactions
(according to the particular MAC). The interactions them-
selves may be computed separately, so that code may be
vectorized and optimized independently of thetreetraversal
method.

3.6 A Latency Hiding Tree Traversal

On a parallel machine, the traversal will encounter hcells
for which the daughtersare not present in local memory. In
this case we add some additional lists which allow compu-
tation to proceed, while the evaluation of thenon-local data
is deferred to some later time. Each hcell is labeled with
a HERE bit. Thisbit is set if the daughters of the hcell are
present in local memory. This bit is tested in the traversal
before the attempt to find the daughters. If the HERE bit
is not set, the key and the source processor address (which
is contained in the hcell) are placed on the request list,
and another copy of the key is placed on a defer list. We
additionally set a REQUESTED hit in the hcell, to prevent
additional requests for the same data. This allows process-
ing to continue on the hcellsin the input walk list. Asthe
traversal proceeds, additional requests will occur, until a
final state is reached, where as much progress as possible

has been made on the given traversal (using only data in
local memory). In this state, there are anumber of keysand
processor addressesin the request list, and an equal number
of keysin the defer list, which require non-local datato be
received before the traversal may continue.

Therequest list is periodically translated into a series of
interprocessor messages which contain requests for data.
Upon receipt of such a message, the appropriate hcells are
packaged into a reply, and the answer is returned via a
second interprocessor message. When areply is received,
an appropriate entry is made in the hash table, and subse-
guent Fi nd requests will return the data. It is possible to
implement this request/reply protocol either loosely syn-
chronously or asynchronously. The decision is governed
by the level of support and relative performance offered by
the hardware and operating system.

Upon receipt of some replies (it is not necessary to wait
for al replies to arrive), the defer list can be renamed as
thewal k_| i st, and the traversal can be restarted with
the newly arrived data. Alternatively, one can begin an
entirely separate traversal to compute, e.g., the force on an-
other particle. With appropriate bookkeeping and a modest
amount of memory, one can tolerate very long latencies by
implementing a circular queue of active traversals (with a
shared request list). We have used a circular queue with
30 active traversals, so that after 30 traversals have been
deferred, we restart the first traversal by copying its defer
list to itswalk list. The requested data has usually arrived
in the interim.

3.7 Memory Hierarchy and Access Patterns

Treecodes place heavy demandson the memory subsystems
of modern computers. The quasi-random accessto widely
separated memory locations during the tree traversal re-
ceives little benefit from a small on-chip cache, and can
in fact overwhelm the translation look-a-side buffer (TLB)
on microprocessors similar to the i 860. This results in
very poor performance from algorithms which have been
designed without consideration of memory bandwidth and
the limitations inherent in memory hierarchies which are
intended to function with DRAM significantly slower than
the processor cycletime.

Since the tree traversal is so stressful to most memory
architectures, we have arranged the order of computation
to take advantage of the underlying structure of the al-
gorithm, which helps encourage a more orderly memory
access pattern. A useful property of treecode algorithms
is that particles which are spatially near each other tend
to have very similar cell interaction lists. By updating the
particles in an order which takes advantage of their spatial
proximity, we can reduce the number of memory accesses

which miss the cacheand TLB. A convenient and efficient
ordering once again uses the same sorted key list used in
the tree construction. By updating particles in the order
defined by the key map (Fig. 7), we achieve this goal.

An additional technique to improve memory access
speed is through the rearrangement of data in the linked
list of collisionsin the hash table. By moving data which
has been recently accessed to the top of the linked list,
it is possible to create a “virtual cache” by keeping often
used data in the contiguous memory locations making up
the hash table. This also allows one to obtain good per-
formance with a hash table much smaller than one would
naively expect.

The more extended memory hierarchy in a distributed
memory parallel computer (possibly with virtual memory
on each node) can benefit from this scheme as well. We
wish to keep things for as long as possible in the fastest
level of the hierarchy that includes registers, cache, local
memory, other processors memory, and virtual memory.
We could extend the “ virtual cache” model even further, by
erasing datawhich has come from another processor which
has not been used recently. Although this has not been im-
plemented, we expect that it will allow significantly larger
simulationsto take place, since the majority of the memory
used consists of copies of cells from other processors.

4 Performance

Here we provide timings for the various stages of the algo-
rithm on the 512 processor Intel Touchstone Deltainstalled
at Caltech. The timings listed are from an 8.8 million
particle production run simulation involving the formation
of structure in a cold dark matter Universe [12]. During
theinitial stages of the calculation, the particles are spread
uniformly throughout the spherical computational volume.
We set an absolute error bound on each partial acceleration
of 10~2 times the mean acceleration in the system. This
resultsin 2.2 x 10% interactions per timestep in the initial
unclustered system. The timing breakdown is asfollows:

computation stage time (sec)

Domain Decomposition 7

Tree Build 7

Tree Traversa 33

Data Communication During Traversal 6
Force Evaluation 54

Load Imbalance 7

Total (5.8 Gflops) 114

At later stages of the calculation the system becomes
extremely clustered (the density inlarge clustersof particles
is typically 108 times the mean density). The number of

interactions required to maintain the same accuracy grows
moderately as the system evolves. At a slightly increased
error bound of 4 x 10~3, the number of interactions in the
clustered systemis 2.6 x 10%° per timestep.

computation stage time (sec)

Domain Decomposition 19

Tree Build 10

Tree Traversal 55

Data Communication during traversal 4
Force Evaluation 60

Load Imbalance 12

Total (4.9 Gflops) 160

It is evident that the initial domain decomposition and
tree building stages take a relatively larger fraction of the
timeinthiscase. Thereasonisthat in order to load balance
the force calculation, some processors have nearly three
times as many particles as the mean value, and over ten
times as many particles as the processor with the fewest.
The load balancing scheme currently attempts to load bal-
ance only the work involved in force evaluation and tree
traversal, so theinitial domain decomposition and tree con-
struction work (which scales closely with the particle num-
ber within the processor) becomesimbalanced.

Note that roughly 50% of the execution time is spent
in the force calculation subroutine. This routine consists
of afew tens of lines of code, so it makes sense to obtain
the maximum possible performancethrough careful tuning.
For the Delta’'si 860 microprocessor we used hand coded
assembly language to keep the three-stage pipeline fully
filled, which resultsin a speed of 28 Mflops per processing
nodein this routine.

If we count only the floating point operations performed
in the force calculation routine as “useful work” (30 flops
per interaction) the overall speed of the code is about 5—
6 Gflops. However, this number is in a sense unfair to
the overall agorithm, since the mgjority of the code is
not involved in floating point operations at all, but with
tree traversal and data structure manipulation. The integer
arithmetic and addressing speed of the processor are asim-
portant as the floating point performance. We hope that in
the future, evaluation of processors does not become over-
balanced toward better floating point speed at the expense
of integer arithmetic and memory bandwidth, as this code
isagood example of why abalanced processor architecture
is necessary for good overall performance.

5 Multi-purpose Applications

Problems of current interest in awide variety of areasrely
heavily on N-body and/or fast multipole methods. Ac-
celerator beam dynamics, astrophysics (galaxy formation,

10

large-scale structure), computational biology (protein fold-
ing), chemistry (molecular structure and thermodynam-
ics), electromagnetic scattering, fluid mechanics (vortex
method, panel method), molecular dynamics, and plasma
physics, to name those we are familiar with, but there are
certainly more. In some of these areas, N2 algorithms are
still the most often used, due to their simplicity. However,
as problems grow larger, the use of fast methods becomes
a necessity. Indeed, in the case of problems such as elec-
tromagneti ¢ scattering, a fast multipole method reducesthe
operation count for solving the second-kind integral equa-
tion from O(NN?) for Gaussian elimination to O(N*/%) per
conjugate-gradientiteration [19]. Such avastimprovement
alows oneto contemplate problems which were heretofore
simply impossible. Alternatively, one can use a worksta-
tion to solve problems that had previously been in the sole
domain of large supercomputers.

We have spent substantial effort in this code keeping the
data structures and functions required by the “application”
away from those of the “tree”. With suitable abstractions
and ruthless segregation, we have met with some success
in this area. We currently have a number of physics ap-
plications which share the same tree code. In general, the
addition of another application only requires the definition
of a data structure, and additional code is required only
with respect to functions which are physics related (e.g.,
the force calculation).

We have described the application of our code to gravi-
tational N-body problems above. The code has also been
indispensable in performing statistical analyses and data
processing on the end result of our N-body calculations,
sincetheir size prohibits analysison anything but aparallel
supercomputer. The codealso hasamodulewhich can per-
form three-dimensional compressiblefluid dynamicsusing
smoothed particle hydrodynamics (with or without grav-
ity). Also, of special note, Winckelmans has used the code
to implement a vortex particle method. It is a simple mat-
ter to use the same program to do physics involving other
force laws. Apart from the definition of a data structure
and modification of the basic force calculation routine, one
only need derive the appropriate MAC using the method
described in Salmon & Warren [8].

6 Futurelmprovements

The code described here is by no means a “final” version.
The implementation has been explicitly designed to easily
allow experimentation, and inclusion of new ideas which
we find useful. It is perhaps unique in that it is serving
doubleduty asahigh performance production codeto study
the process of galaxy formation, as well as a testbed to
investigate multipole algorithms.

Additions to the underlying method which we expect
will improve its performance even further include the ad-
dition of cell-cell evaluations (similar to those used in the
fast multipole method) and the ability to evolve each parti-
cle with an independent timestep (which improves perfor-
mance significantly in systems where the timescale varies
greatly). We expect that the expression of the algorithm
in the C++ language will produce a more friendly program
by taking advantage of the features of the language such
as data abstraction and operator overloading. In the near
future we expect to port and evaluate our code on the lat-
est parallel machines such as the Connection Machine 5
and the Intel Paragon. We expect that the majority of ef-
fort needed to port this code to the CM-5 machine will be
CDPEAC coding of the inner loop of the force-evaluation
routine. The remainder of the code is sufficiently portable
to require only minor modification (we hope).

7 Conclusion

In an overall view of this algorithm, we feel that these
general items deserve special attention:

e The fundamental ideas in this algorithm are, for the
most part, standard tools of computer science (key
mapping, hashing, sorting). We have shown that in
combination, they form the basis of a clean and effi-
cient parallel algorithm. Thistype of algorithm does
not evolve from a sequential method. It requires start-
ing anew, without the prejudicesinherent in aprogram
(or programmer) accustomed to using a single proces-
sor.

e Theraw computing speed of the code on an extremely
irregular, dynamically changing set of particleswhich
require global datafor their update, using alarge num-
ber of processors(512), iscomparablewith the perfor-
mance quoted for much more regular static problems,
which are sometimes identified as the only type of
“scalable” algorithms which obtain good performance
on parallel machines. We hope we have convinced
the reader that even difficult irregular problems are
amenableto parallel computation.

We expect that algorithms such as that described here,
coupled with the extraordinary increase in computational
power expected in the coming years, will play amajor part
in the process of understanding complex physical systems.

Acknowledgments

Wethank Sanjay Rankafor pointing out theutility of Peano-
Hilbert ordering. We thank the CSCC and the CCSF for

11

providing computational resources. JS wishes to acknow!-
edge support from the Advanced Computing Division of
the NSF, as well as the CRPC. MSW wishes to acknowl-
edge support from IGPP and AFOSR. This research was
supported in part by a grant from NASA under the HPCC
program. Thisresearch was performed in part using the In-
tel Touchstone Delta System operated by Caltech on behalf
of the Concurrent Supercomputing Consortium.

References

[1] A.W. Appdl, “An efficient program for many-body simula-
tion,” SAM J. Computing, vol. 6, p. 85, 1985.

K. Esselink, “The order of Appel’sagorithm,” Information
Processing Let., vol. 41, pp. 141-147, 1992.

J. Barnes and P. Hut, “A hierarchicad O(NlogN) force-
calculation algorithm,” Nature, vol. 324, p. 446, 1986.

L. Greengard and V. Rokhlin, “A fast algorithm for particle
simulations,” J. Comp. Phys., vol. 73, pp. 325-348, 1987.

L. Greengard and W. D. Gropp, “A paralle version of the
fast multipole method,” Computers Math. Applic, val. 20,
no. 7, pp. 63—71, 1990.

F. Zhao and S. L. Johnsson, “ The parallel multipole method
on the connection machine” SAM J. Sci. Sat. Comp.,
vol. 12, pp. 14201437, Nov. 1991.

K. E. Schmidt and M. A. Lee, “Implementing the fast mul-
tipole method in three dimensions” J. Sat. Phys., vol. 63,
no. 5/6, pp. 1223-1235, 1991.

J.K.Salmonand M. S. Warren, “ Skel etonsfrom thetreecode
closet,” J. Comp. Phys., 1992. (in press).

J. K. Salmon, Parallel Hierarchical N-body Methods. PhD
thesis, Cdlifornia I nstitute of Technology, 1990.

M. S. Warren and J. K. Salmon, “Astrophysical N-body
simulations using hierarchical tree data structures,” in Su-
percomputing ' 92, IEEE Comp. Soc., 1992. (1992 Gordon
Bell Prize winner).

M. S. Warren, P. J. Quinn, J. K. Salmon, and W. H. Zurek,
“Dark halos formed via dissipationless collapse: 1. Shapes
and alignment of angular momentum,” Ap. J., vol. 399,
pp. 405-425, 1992.

W. H. Zurek, P. J. Quinn, J. K. Salmon, and M. S. Warren,
“Formation of structurein aCDM universe: Correlationsin
position and velocity,” Ap. J., 1993. (in preparation).

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13] J. P Singh, J. L. Hennessy, and A. Gupta, “Implications
of hierarchical N-body techniques for multiprocessor archi-
tectures,” Tech. Rep. CSL-TR-92-506, Stanford University,

1992.

J.P.Singh, C.Holt, T. Totsuka, A. Gupta, and J. L. Hennessy,
“Load balancing and data locality in hierarchica N-body
methods,” Journal of Parallel and Distributed Computing,
1992. (in press).

(14]

[19]

[16]

[17]

[18]

[19]

S. Bhatt, M. Chen, C. Y. Lin, and P. Liu, “Abstractions for
parallel N-body simulations,” Tech. Rep. DCS/TR-895, Yale
University, 1992.

H. Samet, Design and Analysis of Spatial Data Structures.
Reading, MA: Addison-Wedley, 1990.

J. E. Barnes, “An efficient N-body algorithm for a fine-
grain parallel computer,” in The Use of Supercomputers in
Sellar Dynamics (P. Hut and S. McMillan, eds.), (New
York), pp. 175-180, Springer-Verlag, 1986.

D. E. Knuth, The Art of Computer Programming: Sorting
and Searching, vol. 3. Reading, Mass.: Addison Wedey,
1973.

N. Engheta, W. D. Murphy, V. Rokhlin, and M. S. Vassil-
iou, “ The fast multipole method (FMM) for electromagnetic
scattering problems,” |EEE Transactions on Antennas and
Propagation, vol. 40, no. 6, pp. 634-642, 1992.

12

