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ABSTRACT
Most pseudorandom number generators (PRNGs) scale
poorly to massively parallel high-performance computation
because they are designed as sequentially dependent state
transformations. We demonstrate that independent, keyed
transformations of counters produce a large alternative
class of PRNGs with excellent statistical properties (long
period, no discernable structure or correlation). These
counter-based PRNGs are ideally suited to modern multi-
core CPUs, GPUs, clusters, and special-purpose hardware
because they vectorize and parallelize well, and require little
or no memory for state. We introduce several counter-based
PRNGs: some based on cryptographic standards (AES,
Threefish) and some completely new (Philox). All our
PRNGs pass rigorous statistical tests (including TestU01’s
BigCrush) and produce at least 264 unique parallel streams
of random numbers, each with period 2128 or more. In
addition to essentially unlimited parallel scalability, our
PRNGs offer excellent single-chip performance: Philox is
faster than the CURAND library on a single NVIDIA GPU.

1. INTRODUCTION
Pseudorandom number generators (PRNGs) have been

an essential tool in computer simulation, modeling, and
statistics since the earliest days of electronic computation
[46], so the development of PRNGs that map naturally
onto current and future high-performance architectures is
critical to a wide variety of applications [19]. In recent
years, the exponential growth of the number of transistors
on a chip predicted by Moore’s law has delivered more
parallelism, but constant (or even decreasing) clock speed.
The result is an increasing dominance of multi-core ar-
chitectures, stream-oriented graphics processors (GPUs),
streaming SIMD instruction extensions (such as SSE), and
special-purpose hardware. Unfortunately, good parallel
PRNGs, especially ones that scale effectively to the level
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needed by massively parallel high-performance computers,
are still hard to find [16, 36].

Much of the difficulty with parallelizing conventional
PRNGs arises from the fact that the algorithms on which
they are built are inherently sequential. Conventional
PRNGs operate by successively applying a transformation
function, f , which maps an element, sn, in a state space, S,
to the next element, sn+1, in sequence:

sn+1 = f(sn). (1)

Important statistical properties of a PRNG follow from the
size of S, which thus must be large, and f , which must
thus be complicated. More importantly, the procedure is
fundamentally serial: each value depends on the previous
one.1

There are two approaches to parallelizing a PRNG—
multistream and substream—but both approaches have
practical difficulties for conventional PRNGs. In the
multistream approach, the PRNG algorithm is instantiated
in parallel with different parameters, so that each instance
produces a distinct stream of numbers. This approach is
only viable for families of PRNGs that have large, easily
enumerable sets of “known good” parameters, which have
proven elusive. In the substream approach, a single logical
sequence of random numbers is subdivided into disjoint sub-
streams that may be accessed in parallel [6, 13, 15, 28]. The
substream approach requires a mechanism for partitioning
the much longer underlying sequence. Only a few PRNGs
allow the state space to be deterministically partitioned,
and there is a danger that the generated streams are not
statistically independent [7, 8, 15]. If the state space is large
enough, one can partition probabilistically by choosing
starting points for the parallel streams “at random.” This
requires an underlying PRNG with a very long period
so that the probability of overlap between substreams is
negligible.2 Initializing the state of long-period PRNGs
is nontrivial, and failure to do so properly can result in
significant defects [30].

Regardless of which underlying PRNG and approach is
chosen, parallel operation of a PRNG requires storage for
the state in each parallel computational unit (task, pro-
cess, thread, warp, core, node, etc.). On-chip memory in
close proximity to the ALU is a precious resource on mod-

1For some conventional PRNGs, it is possible to “leapfrog” over
multiple output values in less time than it takes to repeatedly
invoke f , but this does not change the fact that the specification
and the most common implementations are fundamentally serial.
2The probability of overlapping substreams is a “birthday prob-
lem” [31].



ern hardware such as GPUs, which makes generators with
very large state spaces less desirable. The time and space
required to initialize and store the 2.5-kB-per-thread state of
the popular Mersenne Twister [29], for example, may cause
significant overhead for a highly parallel GPU application or
for specialized hardware.

In this paper, we explore an alternative approach to
the design of PRNGs and demonstrate its suitability to
parallel computation. We originally used this approach in
biomolecular simulations on Anton [40, 41], a massively
parallel special-purpose machine, but the approach is far
more general. Ignoring some details (see Section 2 for a
complete definition), the sequence is:

xn = b(n). (2)

The nth random number is obtained directly by some func-
tion, b, applied to n. In the simplest case, n is a p-bit in-
teger counter, so we call this class of PRNGs counter-based.
Equation 2 is inherently parallel; that is, it eliminates the
sequential dependence between successive xn in Eqn 1. The
nth element is just as easy to compute as the“next” element,
and there is no requirement or incentive to generate random
values in any particular order. Furthermore, if b is a “bijec-
tion” (a one-to-one mapping of the set of p-bit integers onto
itself), then the period of the generator defined by Eqn 2 is
2p.

It may not be obvious that practical functions, b, exist
that generate high-quality random numbers using Eqn 2.
Cryptographers, however, have been designing entire fami-
lies of functions—called block ciphers, pseudo-random per-
mutations, or pseudo-random bijections—for a generation.
Such functions have exactly the properties needed for b in
Eqn 2. In Section 3, we review some basic techniques of
modern cryptography, with an emphasis on aspects that are
relevant for random number generation.

Cryptographic block ciphers are generally “keyed” func-
tions, such as

xn = bk(n), (3)

where k is an element of a key space and bk is one member of
a family of bijections. A counter-based PRNG constructed
from a keyed bijection can be easily parallelized using ei-
ther the multistream approach over the key space, or the
substream approach over the counter space.

Counter-based PRNGs are ideally suited to parallel com-
putation because they break the sequential dependence be-
tween output values. It is also important to ensure that
no sequential dependence is imposed by the software model
and application programming interface (API). We discuss a
natural API for counter-based PRNGs that gives applica-
tions complete control over either multistream or substream
generation of random numbers by controlling keys as well
as counters. Applications can choose to derive k and n on
the fly from either machine parameters (e.g., core number,
MPI rank, node number, thread number, etc.) or from ap-
plication variables (e.g., particle identifier, voxel number,
data block identifier, grid index, etc.). Generating random
numbers from state associated with application variables al-
lows for machine-independent streams of random numbers
(even with different levels of physical parallelism, since the
streams are not associated with machine parameters). This
approach permits deterministic results across different com-
puting platforms, a boon for debugging and repeatability.

Such use of application variables for random number streams
is nearly impossible to achieve with conventional PRNGs
because enormous memory resources would be required to
store the state of so many (up to billions of) conventional
PRNGs.

In Section 4, we report on three families of PRNGs, all of
which are Crush-resistant, that is, they pass the extensive
empirical validation batteries described in Section 2.2 with
zero failures.3 These tests include the complete SmallCrush,
Crush, and BigCrush batteries in TestU01 [24] as well as ad-
ditional tests that are impractical for conventional PRNGs
because they rely on random access to the PRNG’s output.

All three families have PRNGs with periods of 2128 or
longer, and are parameterized by a key that allows for 264

or more distinct, parallel streams. All three families have
state and key spaces that are frugal with the precious on-
chip memory of modern hardware. All of them have a small
“granularity”(i.e., the amount of data returned by each“turn
of the crank”), thus reducing buffering requirements for an
application that needs only a few random values at a time.
Performance ranges from competitive to outstanding (see
Table 2 and Section 5); one of the PRNGs we introduce is
the fastest PRNG we know of on CPUs, and another is the
fastest we know of on GPUs.

The first family consists of bona fide cryptographic block
ciphers. One of these (AES [34]) has previously been studied
in the context of random number generation [17], but has
not been widely adopted because its performance is thought
to be significantly below that of conventional PRNGs. We
reconsider AES as a PRNG in light of the recent availabil-
ity of of the AES New Instructions (AES-NI) on commod-
ity x86 processors [14]. On hardware with such support, a
PRNG based on AES has a 16-byte key size and granular-
ity, requires 176 bytes of state for each keyed multistream,
and has performance that exceeds the fastest conventional
PRNGs.

AES is an order of magnitude slower without hardware
support. Threefish [11] is a cryptographic block cipher with
more portable performance characteristics. A PRNG based
on Threefish-256 has a granularity of 32 bytes. The key can
be as large as 48 bytes, but needs no internal state, and an
application is under no obligation to use all (or any) of the
key; unused key space need not consume memory. Threefish
is significantly faster than software AES, but its speed is still
well below that of popular conventional PRNGs.

The second family consists of PRNGs based on reducing
the number of rounds and simplifying the key schedule in
cryptographic ciphers. We call two examples of this family
ARS (Advanced Randomization System) and Threefry to
avoid confusion with their secure ancestors. ARS requires
no storage per key, and on CPUs with AES-NI support, it is
our fastest Crush-resistant PRNG. On CPUs without hard-
ware AES support, Threefry is the fastest Crush-resistant
PRNG, requiring only common bitwise operators and in-
teger addition. Threefry can be expected to perform well
across a wide range of instruction set architectures.

The third family consists of non-cryptographic bi-
jections. In this family, we investigate Philox, a new,
non-cryptographic bijection that uses multiplication in-
structions that compute the high and low halves of the

3This is a formidable challenge. Many of the most widely used
PRNGs, including those standardized by C, C++0x and POSIX
fail multiple tests.



product of word-sized operands. We consider Philox
variants with periods of 2128 and 2256. Philox is the fastest
Crush-resistant random number generator we know of on
GPUs.

2. COUNTER-BASED RANDOM NUMBER
GENERATION

Generalizing L’Ecuyer’s definition [22], we define a keyed
family of PRNGs in terms of an internal state space, S; an
output space, U ; a key space, K; an integer output mul-
tiplicity; J ; a state transition function, f ; and an output
function, g:

f : S → S is the transition function,

g : K × ZJ × S → U is the output function.

The output function, gk,j , has two indices. The first, k, is
a member of the key space, K, which allows us to consider
distinct streams of random numbers generated by the same
algorithm and parameters, but differing by a key. The sec-
ond index, j ∈ ZJ , allows us to extract a small number, J ,
of output values from each internal state of the PRNG. Us-
ing J = 4, for example, would allow a PRNG with a 128-bit
state space to produce four 32-bit integer outputs.

In general, a pseudo-random sequence corresponding to a
fixed key, k: uk,0, uk,1, . . ., is obtained by starting with an
initial state, s0, in S, and successive iteration of:

sm = f(sm−1) (4)

uk,n = gk,n mod J(sbn/Jc). (5)

The vast majority of PRNGs studied in the literature rely
on careful design and analysis of the state transition func-
tion, f , and have output multiplicity J = 1. The output
function, g, is usually trivial, consisting of nothing more
than a linear mapping from an ordered finite set, S, onto
the set of real numbers, [0, 1). We use the term conven-
tional to refer to PRNGs that rely on a complicated f and
a simple g. Of the 92 PRNGs surveyed by L’Ecuyer and
Simard [24], 86 are conventional. All of the 45 PRNGs in
version 1.14 of the GNU Scientific Library are conventional.

This paper revisits the underutilized design strategy [17,
37, 45, 48] of using a trivial f and building complexity into
the output function through the composition of a simple
selector, hj , and a complex keyed bijection, bk:

gk,j = hj ◦ bk.

In the rest of the paper, the state space, S, will consist
of p-bit integers, and since p is typically larger than the
size of random numbers needed by applications, we have
J > 1. The selector, hj , simply chooses the jth r-bit block
(with r ≤ bp/Jc) from its p-bit input. The state transition
function, f , can be as simple as:

f(s) = (s + 1) mod 2p.

Because f may be nothing more than a counter, we refer to
such PRNGs as counter-based. The keyed bijection, bk, is
the essence of counter-mode PRNGs.

The two most important metrics for a PRNG are that
its output be truly “random” and that it have a long pe-
riod. Unfortunately, “randomness” is difficult to quantify
and impossible to guarantee with absolute certainty [20, 22],
hence the importance of extensive empirical testing. Once

the statistical quality of a PRNG is established, secondary
considerations such as speed, memory requirements, paral-
lelizability, and ease of use determine whether a PRNG is
used in practice.

2.1 Period of counter-based PRNGs
The period of any useful PRNG must be sufficiently long

that the state space of the PRNG will not be exhausted
by any application, even if run on large parallel machines
for long periods of time. One million cores, generating 10
billion random numbers per second, will take about half an
hour to generate 264 random numbers, which raises doubts
about the long-term viability of a single, unpararameterized
PRNG with a periods of “only” 264. On the other hand,
exhausting the state space of a multistreamable family of
232 such generators, or a single generator with a period of
2128, is far beyond the capability of any technology remotely
like that in current computers. Thus, in Section 4, we focus
on PRNGs with periods of 2128, although the techniques
described can easily support much longer periods.

More generally, because the bijection, f , clearly has period
2p, and because each application of f gives rise to J output
values, it follows that J2p is a period of the counter-based
PRNGs in Section 4. For any two periods, P and Q, it is
easy to show that gcd(P, Q) is also a period, and thus, if P is
the smallest period, then any other period, Q (in particular,
J2p), must be a multiple of P . The number of factors of J2p

is small and easily enumerated, and for each of the PRNGs
in Section 4, we have empirically verified that none of the
smaller factors of J2p is a period of the PRNG, and thus
that J2p is, in fact, the smallest period.

Perhaps in response to a well-motivated concern over some
short-period PRNGs in common use (e.g., the rand48() fam-
ily of functions standardized by POSIX), the most popular
PRNGs of recent years have had extraordinarily long peri-
ods. A Mersenne Twister [29], for instance, has a period of
219937, and the WELL family [35] has periods up to 244497.
These periods completely eliminate concerns over exhaust-
ing the state space. On the other hand, these large state
spaces require substantial amounts of memory and can be
tricky to initialize properly [30]. If initialized carefully, the
best super-long-period PRNGs work very well, but their pe-
riod, in and of itself, does not make them superior in any
practical way to PRNGs with merely long periods. A PRNG
with a period of 219937 is not substantially superior to a fam-
ily of 264 PRNGs, each with a period of 2130.

2.2 Statistical tests and Crush-resistance
Long-standing practice is to subject PRNGs to an exten-

sive battery of statistical tests, each of which is capable of
a three-way distinction: Failed, Suspicious, and Pass. Each
test relies on a statistic whose properties can be theoreti-
cally calculated under the assumption of uniform, indepen-
dent, identically distributed (uiid) inputs. That statistic is
measured on one or more sequences generated by the PRNG,
and the distribution of the statistic is compared with the ex-
pected theoretical distribution. If the measurements would
be highly unlikely under the null hypothesis of uiid inputs
(i.e., the so-called p-value implies that the measurements
would occur with probability less than, for instance, 10−10),
or if the result is “too good to be true” (i.e., a p-value be-
tween 1 − 10−10 and 1), the test is deemed to have Failed.
On the other hand, if the measured statistic is unremarkable



(e.g., a p-value greater than 10−4 and less than 1 − 10−4),
the test is deemed to have Passed. Intermediate p-values
(between 10−10 and 10−4) are considered Suspicious: they
may simply be the result of bad luck, or they may be an
indicator of a statistical failure right on the verge of de-
tectability. Suspicious results are retried with more samples
or a stronger (and perhaps costlier) statistic, until they ei-
ther convincingly Pass or convincingly Fail.

A single Failed result is a clear sign that there is measur-
able structure in a PRNG’s output. That structure might be
reflected in the results of a simulation that uses the PRNG
[12]. It is best to avoid PRNGs with such failures, espe-
cially since fast PRNGs exist that have no known failures
[24], including those described in this work.

A single Pass result, on the other hand, tells us little—it
says that a particular statistic is not sufficient to distinguish
the output of the PRNG from bona fide samples of a random
variable. Nevertheless, a large number of Pass results—and
more importantly, the absence of any Failed results—on a
wide variety of tests provides confidence (but not certainty)
that the output of the PRNG is practically indistinguishable
from a sequence of samples of an idealized random variable.
Intuitively, if hundreds of very different statistics are all un-
able to detect any structure in the PRNG’s output, then it
is hoped that an application that uses the PRNG will be
similarly oblivious to any structure.

Several statistical tests for PRNGs have been developed
[4, 20, 26, 38], but the most comprehensive is TestU01 [24],
which provides a consistent framework as well as batteries
of tests that are supersets of the earlier suites, in addition
to an assortment of tests from other sources that had not
previously been incorporated into a battery. The pre-defined
batteries in TestU01 include SmallCrush (10 tests, 16 p-
values), Crush (96 tests, 187 p-values) and BigCrush (106
tests, 254 p-values). BigCrush takes a few hours to run on
a modern CPU and in aggregate tests approximately 238

random samples.4

2.2.1 Testing for inter-stream correlations
Statistical tests evaluate a single stream of random num-

bers, but additional care is needed when dividing the output
of a PRNG into logical streams of random numbers. If the
PRNG were perfectly random, any partitioning would be ac-
ceptable, but experience with conventional PRNGs suggests
that fairly simple partitionings can expose statistical flaws
in the underlying PRNG [16, 30]. It is thus important to
verify that the distinct, non-overlapping streams created in
this way are statistically independent.

An important advantage of counter-based PRNGs is the
simplicity with which distinct parallel streams may be pro-
duced. We can test the independence of these streams by
providing the TestU01 Crush batteries with an input se-
quence consisting of C values from the first logical stream,
followed by C values from the next logical stream, up to the
last, Lth, logical stream. The input then resumes for the
next C values from the first logical stream, and so on. It is
clearly impossible to run TestU01 with all possible logical
sequences because of the enormous number of strategies by
which an application can partition counters and keys into

4We modified the ClosePairs tests in Crush and BigCrush to gen-
erate each floating-point value from 64 bits of input. With 32-bit
granularity, ClosePairs is susceptible to failure from detection of
the discreteness of its inputs.

logical streams. Nevertheless, it is imperative to check a
representative sample of the kinds of logical streams that
are expected to be encountered in practice: in particular,
logical streams corresponding to different keys (the multi-
stream approach), and corresponding to contiguous blocks of
counters or strided and interleaved counters (the substream
approach).

We chose representative samples of partitioning strate-
gies as follows. First, we generated a sequence of triples,
(nkey, nblk, nctr), by traversing an Nkey ×Nblk ×Nctr array
in one of the six possible dimension orders.5 We then gen-
erated the sequence of random values, u, for TestU01 from
the sequence of triples with:

k = k0 + Skey ∗ nkey

i = i0 + Sblk ∗ nblk + Sctr ∗ nctr

u = bk(i).

The selection that takes three values at a time from each of
1000 key-based multistreams, for example, is captured by a
dimension order from fastest to slowest of (nctr, nkey, nblk)
and Nkey = 1000, Nblk = ∞, Nctr = 3, arbitrary Skey, and
Sblk = 3, Sctr = 1. Taking seven values at a time from a
large number of blocked substreams, with the same key and
264 possible values in each block, is captured by a dimension
order of (nctr, nblk, nkey) and Nkey = 1, Nblk = ∞, Nctr = 7,
arbitrary Skey, Sblk = 264, and Sctr = 1.

Finally, we consider two adversarial counters that do not
represent realistic use cases. Instead, these counters attempt
to expose weaknesses in the underlying PRNG by sequencing
through inputs with highly regular bit patterns. The gray-
coded counter only changes one bit from one counter value
to the next, while the constant Hamming counter keeps the
same number of set and unset bits (e.g., 6 set and 122 unset)
in each counter value. If, for example, a bijection tends to
preserve the number of zero-bits from input to output, the
constant Hamming counter will expose the flaw.

The input sequence to TestU01 is now characterized
by dimension ordering, choice of adversarial counter, and
a set of strides, offsets, and bounds. We have chosen a
variety of such sequences that are representative of the
kinds of blocking and striding that applications using
counter-based PRNGs would actually employ. Depend-
ing on the size of the key and counter spaces, there
are 89 to 139 such sequences. Among them are sev-
eral that employ a constant key with strided counters,
Sctr ∈ {1, 4, 31415, 10000000, 216, 232, 264, 296}, as well
as gray-coded and constant Hamming counters. Also
included are similar strided and adversarial “key counter”
sequences, in which the counter is fixed and only the key
changes. Finally, possible correlations between keys and
counters are explored by testing various combinations
of Nctr, Nkey, Nblk, Sctr, Skey, and Sblk from the set
{1, 3, 4, 8, 16, 448, 4096, 31459, 232, 264}.

Each of the PRNGs proposed in Section 4 is tested with all
three Crush batteries (SmallCrush, Crush and BigCrush) us-
ing all representative parallel sequences. All together, each
PRNG is subject to at least 89 × 212 = 18868 tests with
89 × 457 = 44786 p-values. A PRNG that passes all these
tests is called Crush-resistant. Except where noted, all of

5The six dimension orders are the generalization of the two di-
mension orders in which a two-dimensional array can be traversed,
commonly called row major and column major.



the PRNGs discussed in Section 4 are Crush-resistant.
As a practical matter, only a few conventional PRNGs

pass even one complete battery of Crush tests. The multi-
ple recursive generators, the multiplicative lagged Fibonacci
generators, and some combination generators are reported
to do so. On the other hand, many of the most widely
used PRNGs fail quite dramatically, including all of the
linear congruential generators, such as drand48() and the
C-language rand(). The linear and general feedback shift
register generators, including the Mersenne Twister, always
fail the tests of linear dependence, and some fail many more.
Similar statistical failures have been directly responsible for
demonstrably incorrect simulation results in the past [12],
suggesting that Crush-resistance is a valuable baseline for
reducing the risk of such statistical failures.

3. CRYPTOGRAPHIC TECHNIQUES
The formulation of counter-based PRNGs (Eqn 3) is

closely related to the operation of a block cipher in CTR
mode [9]. Many of the most widely used and most thor-
oughly analyzed ciphers—including AES, DES [32], and a
large number of less popular ciphers—are cryptographically
strong bijections. The only difference between a counter-
based PRNG and a CTR-mode block cipher is that in
the PRNG, the output of the bijection is converted into a
value in the output space rather than xor-ed with a block
of plaintext. Furthermore, a necessary (but not sufficient)
criterion for a cryptographically strong block cipher is that
it satisfy the same statistical independence properties as a
high-quality PRNG (see Section 2.2). Any block cipher that
produced a sequence of values, gk(n), that was distinguish-
able from a stream of truly random, uiid samples of S would
give an unacceptable “advantage” to an attacker and would
be considered broken [1]. It is thus almost certain that
any block cipher that withstands the extremely rigorous
testing of the cryptographic community can be used as the
bijection in Eqn 5 to produce a high-quality PRNG. In fact,
the examples in the literature of counter-based PRNGs all
use cryptographic block ciphers or cryptographic hashes
[17, 24, 37, 45, 48]. Analyses of PRNGs based on AES,
SHA-1, MD5 and ISAAC have shown that they all produce
high-quality PRNGs in CTR mode [17, 24, 45]. PRNGs
based on these block ciphers and hashes have not become
popular in simulation largely because of performance—they
are typically much slower than high-quality conventional
PRNGs.

The property of producing highly random output from
highly regular input is known as “diffusion” in the crypto-
graphic literature, and is considered an essential property
of any cryptographic cipher [39]. Diffusion can be quanti-
fied using the “avalanche criterion,” which requires that any
single-bit change in the input should result (on average) in
a 50% probability change in each output bit.

In Section 4, we modify existing cryptographic block ci-
phers while still preserving their Crush-resistance, and we
propose a new Crush-resistant bijection that is inspired by
cryptographic techniques. To explore the trade-offs, it is
helpful to be acquainted with some of the basic tools of
modern cryptography.

Foremost among these is the idea of an iterated cipher.
Most modern block ciphers consist of multiple iterations of
simpler bijections, called “rounds.” Each round introduces
some diffusion, but by itself does not completely diffuse in-

L = R′ 	 Fk(B−1
k (L′)) R = B−1

k (L′)

L

L’

Bk

R’ 

Fk

R

+

L′ = Bk(R) R′ = Fk(R)⊕ L

Figure 1: A generalized Feistel function maps 2p-bit
inputs (L,R) to 2p-bit outputs, (L′,R′). Block Fk is
an arbitrary key-dependent function mapping p-bit
inputs to p-bit outputs, and block Bk is an arbitrary
key-dependent bijection on the p-bit integers. (Bk

is not normally present in the standard Feistel con-
struction, that is, standard Feistel functions can be
considered a special case in which Bk is the iden-
tity.) The operator ⊕ is a group operation on the
p-bit integers (e.g., bitwise xor or addition modulo
2p). A Feistel function is clearly a bijection because
we can compute the unique inverse mapping using
B−1

k and 	, which are guaranteed to exist because
Bk is a bijection and ⊕ is a group operator.

puts across outputs. Nevertheless, the composition of many
simple rounds can result in a cryptographically strong bijec-
tion. For example, 128-bit AES has 10 rounds, DES has 16
rounds, and 256-bit Threefish has 72 rounds. As a “safety
margin,” the number of rounds employed for cryptographic
use is significantly larger than the number of rounds that
can be broken by the best known attack.

A second key insight from cryptography is the “Feistel
function” (see Figure 1), first employed by the Lucifer sys-
tem [43, 44], which provides a simple way to build a 2p-bit
bijection from an arbitrary (i.e., not bijective) p-bit, keyed
function, Fk. Feistel functions are a common building block
in modern ciphers.

Feistel functions allow us to work with 32-bit or 64-bit
values (the word size of modern computer hardware) in fairly
simple and CPU-friendly ways to produce bijections of 64-
bit and 128-bit spaces.

Another important building block in modern cryptogra-
phy is the “SP network” [10], illustrated in Figure 2. In an
SP network, a highly diffusive bijection is obtained by iterat-
ing successive rounds of substitution, called “S-boxes” (nar-
row bijections, applied in parallel), and permutations, called
“P-boxes” (wider, but highly structured mappings that sim-
ply permute the bits in a p-bit space). AES and Threefish,
among many other block ciphers are structured as SP net-
works.

SP networks and Feistel functions are often combined in
the same algorithm. For example, each round of DES is
structured as a Feistel function, but each individual Fk is
specified as an SP network.
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Figure 2: Each round of an SP network consists of
a parallel series of narrow S-boxes, each of which is
a bijection. The output of the S-boxes is then shuf-
fled by a P-box. Some P-boxes (for instance, AES)
are quite complex and troublesome for software im-
plementation, but it is possible to design effective
SP networks with P-boxes that work on word-wide
chunks of bits and are very efficient in software (for
instance, Threefish).

4. DESIGN OF EFFICIENT COUNTER-
BASED PRNGS

Several approaches to the design of Crush-resistant bijec-
tions suggest themselves. First, an existing cryptographic
block cipher could be used. It would be extremely surprising
if any well-regarded cryptographic cipher failed any statis-
tical tests. In general, cryptographic block ciphers are not
used in PRNGs because they are slow without hardware
support. A second approach is to trade strength for speed,
which we discuss in Section 4.2. The resulting bijection will
not be suitable for cryptography, but may be Crush-resistant
and thus suitable for use in a PRNG. Finally, one can design
an entirely new bijection using the principles of cryptogra-
phy, but emphasizing statistical quality and speed.

4.1 Cryptographic PRNGs: AES, Threefish
The first family of counter-based PRNGs we consider

is based on cryptographically strong block ciphers. These
will produce random numbers whose quality should satisfy
even the most cautious of users. We have confirmed the
completely unsurprising result that these PRNGs are fully
Crush-resistant.

The Advanced Encryption Standard, AES, has been con-
sidered for use in PRNGs before [17]. It is a 10-round iter-
ated block cipher with a 128-bit counter-space and a 128-bit
key-space.6

Beginning in 2010, high-performance CPUs from Intel
(and in 2011, AMD) have supported the AES-NI instruc-
tions that dramatically improve the performance of an AES
PRNG. Intel reports streaming performance of 1.3 cycles
per byte (cpB) for cryptographic kernels using AES [14].
Using compiler intrinsics to invoke the AES instructions
and gcc-4.5.2, we have measured an AES PRNG running at
1.7 cpB on a single core, faster than the Mersenne Twister
in the C++0x standard library. This AES PRNG uses a
pre-computed set of 11 “round keys,” which require both
time (approximately 100 cycles) to generate, and space
(176 bytes) to store. We also have an implementation

6Versions of AES also exist with key lengths of 192 and 256.

that does on-the-fly generation of round keys, that requires
no state space, and demands no setup time, but that has
significantly lower throughput (7.3 cpB).

In contrast to AES, Threefish is a family of block ciphers
designed with performance on modern 64-bit microproces-
sors in mind. Threefish is used in the Skein hash algorithm
[11], one of six finalists in the SHA-3 [33] competition. The
security properties of Skein are all proved in terms of claims
about Threefish, so it seems reasonable to consider Threefish
a cryptographically secure block cipher.

Threefish uses nothing more complicated than 64-bit addi-
tion, rotation, and xor, relying on a relatively large number
of rounds (72 for Threefish-256) to achieve security. Al-
though it uses an SP network, the permutation works on
word-sized blocks and can be implemented in software with
no data movement. Furthermore, modern processors can ex-
ploit instruction-level parallelism to compute several S-boxes
simultaneously. Consequently, Threefish-256 is much faster
than AES on platforms that lack the AES-NI instructions7.

4.2 Fast PRNGs by reducing cryptographic
strength: ARS, Threefry

Any modification of a cryptographic block cipher would
make it unsuitable for its intended use in security, but
it is reasonable for PRNG design to trade cryptographic
strength for speed while still maintaining Crush-resistance.
The most obvious simplifications include reducing the num-
ber of rounds, narrowing the data paths, and simplifying
or eliminating the often complicated “key schedule,” which
is designed to keep the key hidden from a determined and
resourceful attacker who is capable of choosing plaintext
and observing the generated ciphertext.

We have investigated a few specific modifications of AES
and Threefish, and call the resulting bijections ARS (Ad-
vanced Randomization System) and Threefry, respectively.
ARS-N consists of N rounds of the AES round function, but
uses a key schedule that follows a much simpler pattern in-
spired by the Weyl sequence.8 Round keys are generated as
follows, using conventional 64-bit addition on the separate
high and low halves of the 128-bit ARS key:

round key0 = user key (6)

round keyi = round keyi−1 + constant.

The constants are fairly arbitrary. We have verified the
Crush-resistance of ARS-5 (ARS-4 is not Crush-resistant)
with the constants 0xBB67AE8584CAA73B (sqrt(3)-1) and
0x9E3779B97F4A7C15 (the golden ratio) for the upper and
lower halves of the round key. ARS has superb performance
as a PRNG on CPUs with AES-NI support; it is significantly
faster than any other Crush-resistant PRNG (conventional
or counter-based) on such CPUs.

Cryptographic strength can be traded for performance in
Threefish in the same ways. Threefry-N×W-R follows the
same pattern of S and P boxes as Threefish, but with R
rounds, and N W -bit inputs and outputs. The key insertion

7The software implementation we used for AES is not the fastest
known. AES has been reported to run at 10–15 cpB on a variety
of platforms [2] (without AES-NI). It is thus likely that the soft-
ware AES performance reported in Table 2 could be improved.
Similarly, no attempt was made to vectorize our Threefish imple-
mentation.
8The Weyl sequence, {a mod 1, 2a mod 1, 3a mod 1, ...}, by itself,
produces random numbers of poor quality, but it has been used
successfully to overcome deficiencies in other generators [3].



Round mod 8
0 1 2 3 4 5 6 7

Threefry-4×32 10 11 13 23 6 17 25 18
26 21 27 5 20 11 10 20

Threefry-2×64 16 42 12 31 16 32 24 21

Table 1: Rotation constants used on each round of
Threefry-N×W. The rotation constants are recycled
after eight rounds.

schedule is the same as in Threefish, except that Threefry
ignores the “tweak,” an extra 128 bits of key-like input and
associated arithmetic that seem superfluous for PRNG use.

For W = 64 and N ≥ 4, Threefry’s rotation constants are
taken from Threefish. For other parameters, there are no
published rotation constants for Threefish, so we generate
Threefry’s rotation constants (shown in Table 1) using the
code provided with the Skein reference materials. Using
these rotation constants, we have confirmed that Threefry-
2×64-13, Threefry-4×32-12, and Threefry-4×64-12 are all
Crush-resistant, and that Threefry-4×64-72 is identical to
Threefish-256 with zero “tweak.”

Threefry is the fastest Crush-resistant PRNG on CPUs
without AES hardware support, and is among the fastest
PRNGs on GPUs. Even Threefry-4×64-20, which has eight
extra rounds of safety margin, is faster than any Crush-
resistant conventional PRNG of which we are aware.

4.3 The Philox PRNG
Threefish, and by extension, Threefry, were designed to

perform a relatively large number of very simple round func-
tions. We now consider the alternative: an iterated bijec-
tion that achieves Crush-resistance with a smaller number
of more complex round functions. The round function must
not be too complex, because in order to be competitive with
Threefry, it has to perform the full, multi-round bijection
in 30–50 (preferably fewer) clock cycles. If we target 6–10
rounds (about half as many as Threefry), that gives about
5 clocks per round, which tightly bounds the design space.

If we restrict our attention to integer operations, the “ob-
vious” way to quickly scramble the bits in a processor’s reg-
isters is to use a multiply instruction.9 The details of mul-
tiply instructions vary across architectures, but one way or
another, every modern architecture offers single-instruction
operations to do:

mulhi(a, b) → b(a× b)/2W c
mullo(a, b) → (a× b) mod 2W ,

with W equal to the processor’s word size. These multiply
instructions have some interesting properties:

• For constant, odd M , mullo(a, M) is a bijection.

• For constant M , a single bit flip in a causes an
“avalanche” of changed bits in mullo(a, M) and
mulhi(a, M). The avalanche occurs only in bits more
significant than the flipped input bit in mullo(a, M),
and only in less significant bits in mulhi(a, M).

• Integer multiplication takes between 2 and 10 cycles
on common high-performance architectures, but can

9This insight goes all the way back to the earliest random num-
ber generators, von Neuman’s “middle square” [47] and Lehmer’s
linear congruential generators [25].

generally be overlapped with other operations like ad-
dition, subtraction, and xor.

• On some architectures (notably x86 and x86-64) mulhi
and mullo of the same arguments can be computed
simultaneously by a single instruction.

Philox is an SP network with an overall structure similar
to Threefry, but with an S-box that uses multiplication to
provide diffusion. The Philox S-box is a generalized Feis-
tel function (see Figure 1) using bitwise xor as the group
operator, ⊕:

L′ = Bk(R) = mullo(R, M)

R′ = Fk(R)⊕ L = mulhi(R, M)⊕ k ⊕ L.

For N = 2, the Philox-2×W-R bijection performs R
rounds of the Philox S-box on a pair of W-bit inputs.
For larger N, the inputs are permuted using the Threefish
N-word P-box before being fed, two-at-a-time, into N/2
Philox S-boxes, each with its own multiplier, M , and key,
k.10 The N/2 multipliers are constant from round to round,
while the N/2 keys are updated for each round according
to the Weyl sequence defined in Eqn 6.

All that remains is to determine the multipliers. To find
candidate multipliers, we first quantify the avalanche cri-
terion (see Section 3) and then search for multipliers that
maximize avalanche in a small number of rounds. Candi-
date multipliers found in this way are then subjected to the
full suite of Crush tests to determine the minimum number
of rounds that achieves Crush-resistance.

To quantify the avalanche of a function, f , define the dif-
ferentials δij(x) equal to one or zero according to whether
the ith output bit of f changes when the jth input bit of x
is changed. Then, for a large number D of random inputs,
xd, compute:

∆ij =

DX
d=1

δij(xd).

If the avalanche criterion were satisfied, the values of ∆ij

would be independent samples of the binomial process with
mean D/2 and variance D/4, a hypothesis that can be tested
using a χ2 statistic.

We search for multipliers that maximize the χ2 statistic
after four rounds11 of Philox-N×W by starting with several
thousand randomly chosen multipliers and refining them
with an ad hoc strategy consisting of “point mutations”
(one and two-bit modifications) genetic recombination
(mixing fragments from good multipliers found so far)
and steepest descent (keeping the values that maxmize
the criterion). This procedure yielded the following mul-
tipliers: for Philox-4x32, 0xCD9E8D57 and 0xD2511F53;
for Philox-2×64, 0xD2B74407B1CE6E93, and for Philox
4×64, 0xCA5A826395121157 and 0xD2E7470EE14C6C93.
Full Crush-resistance was then verified using these multi-
pliers with round counts of Philox-4×32-7, Philox-2×64-6,
Philox-4×64-7.

Philox-4×32 relies on 32-bit multiplication, which is
better-supported on current GPUs (and low-power, em-
bedded CPUs). It is slightly slower than Philox-2×64 on

10For Philox-4xW, the permutation consists of swapping the R
inputs between the two S-boxes.

11In all cases, the χ2 values rule out the null hypothesis with high
probability, indicating that four-round Philox fails the avalanche
criterion and is inadequate as a PRNG.



Method Max. Min. Output Intel CPU Nvidia GPU AMD GPU
input state size cpB GB/s cpB GB/s cpB GB/s

Counter-based, Cryptographic
AES(sw) (1+0)×16 11×16 1×16 31.2 0.4 – – – –
AES(hw) (1+0)×16 11×16 1×16 1.7 7.2 – – – –

Threefish (Threefry-4×64-72) (4+4)×8 0 4×8 7.3 1.7 51.8 15.3 302.8 4.5

Counter-based, Crush-resistant
ARS-5(hw) (1+1)×16 0 1×16 0.7 17.8 – – – –
ARS-7(hw) (1+1)×16 0 1×16 1.1 11.1 – – – –

Threefry-2×64-13 (2+2)×8 0 2×8 2.0 6.3 13.6 58.1 25.6 52.5
Threefry-2×64-20 (2+2)×8 0 2×8 2.4 5.1 15.3 51.7 30.4 44.5
Threefry-4×64-12 (4+4)×8 0 4×8 1.1 11.2 9.4 84.1 15.2 90.0
Threefry-4×64-20 (4+4)×8 0 4×8 1.9 6.4 15.0 52.8 29.2 46.4
Threefry-4×32-12 (4+4)×4 0 4×4 2.2 5.6 9.5 83.0 12.8 106.2
Threefry-4×32-20 (4+4)×4 0 4×4 3.9 3.1 15.7 50.4 25.2 53.8

Philox2×64-6 (2+1)×8 0 2×8 2.1 5.9 8.8 90.0 37.2 36.4
Philox2×64-10 (2+1)×8 0 2×8 4.3 2.8 14.7 53.7 62.8 21.6
Philox4×64-7 (4+2)×8 0 4×8 2.0 6.0 8.6 92.4 36.4 37.2

Philox4×64-10 (4+2)×8 0 4×8 3.2 3.9 12.9 61.5 54.0 25.1
Philox4×32-7 (4+2)×4 0 4×4 2.4 5.0 3.9 201.6 12.0 113.1

Philox4×32-10 (4+2)×4 0 4×4 3.6 3.4 5.4 145.3 17.2 79.1

Conventional, Crush-resistant
MRG32k3a 0 6×4 1000×4 3.8 3.2 – – – –
MRG32k3a 0 6×4 4×4 20.3 0.6 – – – –
MRGk5-93 0 5×4 1×4 7.6 1.6 9.2 85.5 – –

Conventional, Crushable
Mersenne Twister 0 312×8 1×8 2.0 6.1 43.3 18.3 – –

XORWOW 0 6×4 1×4 1.6 7.7 5.8 136.7 16.8 81.1

Table 2: Memory and performance characteristics for a variety of counter-based and conventional PRNGs.
Maximum input is written as (c+k)×w, indicating a counter type of width c×w bytes and a key type of width
k×w bytes. Minimum state and output size are c×w bytes. Counter-based PRNG performance is reported
with the minimal number of rounds for Crush-resistance, and also with extra rounds for “safety margin.”
Performance is shown in bold for recommended PRNGs that have the best platform-specific performance with
significant safety margin. The multiple recursive generator MRG32k3a [21] is from the Intel Math Kernel
Library and MRGk5-93 [23] is adapted from the GNU Scientific Library (GSL). The Mersenne Twister [29]
on CPUs is std::mt19937 64 from the C++0x library. On NVIDIA GPUs, the Mersenne Twister is ported
from the GSL (the 32-bit variant with an output size of 1×4 bytes). XORWOW is adapted from [27] and is
the PRNG in the NVIDIA CURAND library.

a single Xeon core, but it is significantly faster on a GPU.
On an NVIDIA GTX580 GPU, Philox-4×32-7 produces
random numbers at 202 GB per second per chip, the highest
overall single-chip throughput that we are aware of for
any PRNG (conventional or counter-based). On an AMD
HD6970 GPU, it generates random numbers at 113 GB per
second per chip, which is also an impressive single-chip rate.
Even Philox-4×32-10, with three extra rounds of safety
margin, is as fast as the non-Crush-resistant XORWOW[27]
PRNG on GPUs.

We have only tested Philox with periods up to 2256, but
as with Threefish and Threefry, the Philox SP network is
specified for widths up to 16×64 bits, and corresponding
periods up to 21024. There is every reason to expect such
wider forms also to be Crush-resistant.

5. COMPARISON OF PRNGS
When choosing a PRNG, there are several questions that

users and application developers ask: Will the PRNG cause
my simulation to produce incorrect results? Is the PRNG
easy to use? Will it slow down my simulation? Will it spill

registers, dirty my cache, or consume precious memory? In
Table 2, we try to provide quantitative answers to these
questions for counter-based PRNGs, as well as for a few
popular conventional PRNGs.12

All the counter-based PRNGs we consider are Crush-
resistant; there is no evidence whatsoever that they produce
statistically flawed output. All of them conform to an
identical, naturally parallel API, so ease-of-use considera-
tions are moot. All of them can be written and validated
in portable C, but as with many algorithms, performance
can be improved by relying on compiler-specific features or
“intrinsics.” All of them have periods in excess of 2128 and
key spaces in excess of 264—well beyond the practical needs

12Tests were run on a 3.07 GHz quad-core Intel Xeon X5667 (West-
mere) CPU, a 1.54 GHz NVIDIA GeForce GTX580 (512 “CUDA
cores”) and an 880 Mhz AMD Radeon HD6970 (1536 “stream
processors”). The same source code was used for counter-based
PRNGs on all platforms and is available for download. It was
compiled with gcc 4.5.3 for the Intel CPU, the CUDA 4.0.17
toolkit for the NVIDIA GPU and OpenCL 1.1 (AMD-APP-SDK-
v2.4) for the AMD GPU. Software AES used OpenSSL-0.9.8e.
The MRG generators were from version 10.3.2 of the Intel Math
Kernel library and version 1.12 of the GNU Scientific Library.



of computers in the forseeable future.
On-chip memory is a crucial resource on modern hard-

ware, and ignoring it can lead to sub-optimal design choices.
The highest-performing conventional PRNGs may only get
“up to speed” when producing thousands of random values
in a batch, but applications may only consume a few random
values at a time in each thread. The output of such PRNGs
can, of course, be buffered into large chunks, but this en-
tails a substantial memory cost that may limit parallelism
or performance.

To quantify the memory requirements, we distinguish be-
tween the input size, the state size and the output granu-
larity of each PRNG. To some extent, these sizes are gov-
erned by trade-offs in specific implementations rather than
the fundamental algorithm. For example, the AES bijec-
tion can be implemented either with a pre-computed set of
round keys (which requires an 11×128-bit state) or with on-
the-fly round keys (which is slower, but requires no state).
In Table 2, we report the minimum state size and maximum
allowable input size for each invocation of the measured im-
plementations of some selected PRNGs. Any user of these
PRNGs will incur the memory costs of the reported amount
of state, and must provide counter and key values of the
specified input size on every invocation. Some users may
find it convenient, however, to zero-pad a smaller input if
the full period length or key space is not needed. One can
also use global memory or even compile-time constants for
some portion of the input.

The output granularity of a counter-based PRNG is typi-
cally the size of the counter. That is, each invocation of the
underlying API generates random data of the same size as
the counter, so an application that needs a smaller amount
of random data will be required to buffer the excess output
somewhere. Conventional PRNGs have very different gran-
ularity characteristics. In some cases (e.g., GSL, C++0x),
the granularity is hidden by the library—single values are
returned, regardless of the internal workings of the PRNG.
In other cases (e.g., the Intel Math Kernel Library), the
output granularity is chosen by the user, but the PRNG’s
performance depends very strongly on the choice [18].

We report single-chip PRNG performance in gigabytes per
second.13 This metric is chip-dependent, but provides data
on the relative computational throughput of some current
high-performance processor chips. We also report PRNG
performance in single-core cpB—that is, the amortized num-
ber of clock cycles required for a single core to produce a
random byte. Single-core cpB allows one to assess the rel-
ative cost of random number generation compared to the
code that uses the random numbers without the distraction
of clock-speed or number of cores.

At 1 to 4 cpB, the raw speed of Crush-resistant PRNGs is
past the point of diminishing returns because very few ap-
plications are demanding enough to notice one or two extra
clock cycles per byte of random data. It is thus advisable
to trade a few cycles of performance for an additional, but
unquantifiable, margin of safety conferred by adding rounds.
(The additional safety is unquantifiable because we have no
evidence of any statistical flaws that could be improved.)

In Table 2, we report performance for the variants of ARS,

13When measuring performance, we accumulate a running sum of
the random numbers generated, but do not write them to memory
on either CPUs or GPUs, to avoid memory or bus bandwidth
effects.

Philox, and Threefry with the minimum number of rounds
required for Crush-resistance, as well as variants with ad-
ditional rounds as a safety margin (ARS-7, Philox with 10
rounds and Threefry with 20 rounds). We favor use of the
latter variants, with the extra safety margin, since the per-
formance penalty is quite small.

No clear winner emerges from Table 2. One method for
approaching the choice is as follows. If an application can
rely on the presence of the AES-NI instructions and can
tolerate 176 bytes of key state per multi-stream, then AES
is highly recommended: it is fast, thoroughly scrutinized
and cryptographically strong. If storage of pre-computed
keys is too costly, or if the last iota of performance is crit-
ical, ARS-7 is advised. Without AES-NI, we recommend
Threefry-4×64-20 on CPUs and Philox-4×32-10 on GPUs.
They are portable, indistinguishable in terms of statistical
quality (both are Crush-resistant with a substantial safety
margin), and faster than any Crush-resistant conventional
PRNG.

5.1 An API for parallel random number gen-
eration

It is easy to parallelize a counter-based PRNG using ei-
ther or both the multistream and substream approaches. In
the multistream approach, the application assigns a unique
key, k, to each computational unit and then the units gen-
erate their own sets of random numbers in parallel by incre-
menting their own counters n, and computing bk(n). In the
substream approach, the application partitions the counter
space among the computational units, and each unit gen-
erates the random numbers, bk(n), where n is in its set of
assigned counters and k is the same across all units. Par-
titioning the integers is easy. Strategies like blocking (task
t gets the N integers from t × N to [t + 1] × N) and strid-
ing (task t gets the integers, n, for which n mod T = t) are
simple to code and require almost no overhead.

In contrast to conventional PRNGs, where advancing the
state using a carefully crafted transition algorithm is the
library’s essential role, an API that advances the state of
counter-based PRNGs would obscure more than it illumi-
nated. Instead, a natural API for counter-based PRNGs
provides the keyed bijection, bk, but leaves the application
in complete control of the key, k, and counter, n. Such con-
trol allows the application to manage parallelism in any way
that is most convenient or effective, and makes available a
wide range of strategies for producing essentially unlimited
independent streams of numbers with little or no memory
overhead. If, for example, an application with a large num-
ber of objects already has stable integer identifiers, i, for
those objects, as well as a monotonically advancing notion
of “time” (T ), and needs a random number per object for
each value of T , it could concatenate the object identifier,
i, and time, T , into a p-bit counter, n, from which it can
obtain object-specific, time-dependent random numbers by
computing bk(n); this method amounts to a substream ap-
proach. Alternatively, an application could select the object
identifier, i, as the key and the time, T , as the counter, and
use bi(T ) to get streams of random numbers for each object
(i.e., a multistream approach). In either of these cases, no
extra memory is needed to store state for these streams of
random numbers.

Most applications require the capability for users to spec-
ify “seed” values for the PRNG. The purpose of the seed is



to allow a user to run a variety of different simulations with
otherwise identical parameters—for example, to sample dif-
ferent regions of a search space. Counter-based PRNGs eas-
ily accomodate seeds. One can simply reserve 32 bits in the
key or the counter for a 32-bit seed common to all threads in
a parallel application. With 64 bits (or more) of key space
and 128 bits of counter space, there remains plenty of space
for parallel multistreaming or substreaming.

An even more important aspect of counter-based PRNGs
is that no synchronization or communication is needed
across different parallel streams of random numbers,
which allows great flexibility in application parallelization
strategy. A particle simulation, for example, may be
parallelized so that forces on particles that happen to be
near the boundary between some processors’ domains will
be computed redundantly on multiple processors to avoid
costly inter-processor communication. If the simulation also
requires random forces, counter-based PRNGs can easily
provide the same per-atom random forces on all the proces-
sors with copies of that atom by using the atom identifier
and timestep value as described above. Such redundant
computation is difficult with a conventional PRNG unless
a unique per-particle PRNG state is maintained, which can
be very costly, or in some cases impossible. Avoiding the
need for communication and synchronization removes a
significant bottleneck to scaling such particle simulations to
very large numbers of cores.

The one important precondition that the application must
maintain when managing keys and counters is that (key,
counter) tuples must never be improperly re-used, since an
inadvertent re-use of the same tuple will result in exactly the
same random number, with potentially dire consequences
for simulation accuracy [5, 42]. This precondition is not
particularly onerous, since many naturally unique sources
for keys and counters exist in applications, and even if there
are no appropriate simulation state variables, a simple global
counter is trivial to maintain. In fact, the error identified
by [5] arose because of a failure to properly checkpoint and
restore the PRNG’s state. If the PRNG were driven by
the logical simulation state, such errors would be far less
common.

Our experiments with counter-based PRNGs are all writ-
ten using a common API with C and C++ bindings. All
functions are “pure,” with no internal state, so bindings for
other languages, including functional languages, would be
easy to devise. The C bindings provide three typedefs and
two functions for each implemented PRNG. The typedefs
specify the counter type and two key types. A keyinit func-
tion transforms a user key into the key that that is used as
an argument, along with a counter, to the bijection func-
tion. The counter and userkey types are structs containing
a single array member—simple enough for compilers to ag-
gressively optimize, and easy for application developers to
work with. In most cases keyinit simply copies its input to
its output, but in some cases (e.g., AES) a non-trivial cal-
culation is required to expand the user key into an opaque
internal key.

The C++ API enhances the userkey and counter types
with member functions, friends, and typedefs so that they
closely resemble the std::array objects standardized by
C++0x. It also provides bijections as functor classes with
member typedefs and an overloaded operator() for the
bijection itself.

For the benefit of applications that expect a conventional
API, the C++ API also provides a template wrapper that
maps Bijection classes into fully standardized, conventional
C++0x“Random Number Engines.” These engines can then
be used as standalone sources of random numbers, or they
can be used in conjunction with other library utilities such
as random distributions. Wrapping the bijections with an
adapter that conforms to another API (e.g., GSL) would
also be straightforward.

The C and C++ APIs are implemented entirely in header
files, which facilitates porting and allows compilers to per-
form significantly better optimization. In particular, con-
stant folding has a significantly beneficial effect if the bijec-
tions are called with constants for the number of rounds.
The same headers can be compiled into binaries targeted at
CPUs (using a standard compiler) or GPUs (using either
CUDA or OpenCL). The timings for counter-based PRNGs
in Table 2 were obtained using the same underlying source
code and machine-specific compilation systems.

6. CONCLUSIONS
The keyed counter-based PRNGs presented in this paper

can be naturally and easily parallelized over large numbers
of cores, nodes, or logical software abstractions (particles,
voxels, etc.) within large-scale simulations. These PRNGs
are fast, require little or no state, and are easily initialized.
They have long periods and have passed the most compre-
hensive set of statistical tests we have found (including tests
that many popular, conventional PRNGs fail).

Implementations of several of the PRNGs described in this
paper, including test vectors, API bindings, and example
programs, are available in source form for download from:
http://deshawresearch.com/resources_random123.html

A single set of header files implements the API in C, C++98,
C++0x, CUDA and OpenCL environments. Although a
conventional C++0x “random engine” is provided, we find
the use of the native API much better suited to highly paral-
lel applications because it permits on-the-fly random number
generation from unique application-level logical state vari-
ables.

Among our counter-based PRNGs, the Philox and
Threefry families include the fastest PRNGs of which we
are aware for GPUs and CPUs without AES-NI support.
Our ARS family contains the fastest PRNG of which we are
aware for modern CPUs with AES-NI support. Counter-
based PRNGs using the full AES and Threefish encryption
algorithms are slower, but are built on ciphers that have
withstood the scrutiny of the cryptographic community.
The best news about counter-based PRNGs may well
be that the ones presented here are just the tip of the
iceberg. Many more statistically strong, high-performance,
low-memory, long-period, parallelizable, counter-based
PRNGs remain undiscovered or unrecognized.

Because all the counter-based PRNGs described above re-
quire fewer clock ticks than a single cache miss or mem-
ory access, considerations other than raw speed seem more
relevant—particularly, statistical quality, ease of paralleliza-
tion, safe seeding, convenience of key or counter manage-
ment, and number of bytes of random data returned on each
invocation. Counter-based PRNGs excel on all these fronts.
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